Maximal f-vectors of Minkowski sums of large numbers of polytopes
نویسنده
چکیده
It is known that in the Minkowski sum of r polytopes in dimension d, with r < d, the number of vertices of the sum can potentially be as high as the product of the number of vertices in each summand [2]. However, the number of vertices for sums of more polytopes was unknown so far. In this paper, we study sums of polytopes in general orientations, and show a linear relation between the number of faces of a sum of r polytopes in dimension d, with r ≥ d, and the number of faces in the sums of less than d of the summand polytopes. We deduce from this exact formula a tight bound on the maximum possible number of vertices of the Minkowski sum of any number of polytopes in any dimension. In particular, the linear relation implies that a sum of r polytopes in dimension d has a number of vertices in O(n) of the total number of vertices in the summands, even when r ≥ d. This bound is tight, in the sense that some sums do have that many vertices. ∗Department of Mathematics and Statistics, McGill, Montréal, Canada. [email protected]
منابع مشابه
On f-vectors of Minkowski additions of convex polytopes
The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes we call perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of face lattice of the sum in terms of the face lattice of a given perfectly centered polytope. Exact f...
متن کاملf-Vectors of Minkowski Additions of Convex Polytopes
The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes called perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of faces of the sum in terms of the face lattice of a given perfectly centered polytope. Exact face coun...
متن کاملRelative Stanley–reisner Theory and Lower Bound Theorems for Minkowski Sums
This note complements an earlier paper of the author by providing a lower bound theorem for Minkowski sums of polytopes. In [AS16], we showed an analogue of McMullen’s Upper Bound theorem for Minkowski sums of polytopes, estimating the maximal complexity of such a sum of polytopes. A common question in reaction to that research was the question for an analogue for the Barnette’s Lower Bound The...
متن کاملA linear equation for Minkowski sums of polytopes relatively in general position
The objective of this paper is to study a special family of Minkowski sums, that is of polytopes relatively in general position. We show that the maximum number of faces in the sum can be attained by this family. We present a new linear equation that is satisfied by f -vectors of the sum and the summands. We study some of the implications of this equation.
متن کاملMinkowski Sum of Polytopes and Its Normality
In this paper, we consider the normality or the integer decomposition property (IDP, for short) for Minkowski sums of integral convex polytopes. We discuss some properties on the toric rings associated with Minkowski sums of integral convex polytopes. We also study Minkowski sums of edge polytopes and give a sufficient condition for Minkowski sums of edge polytopes to have IDP.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 47 شماره
صفحات -
تاریخ انتشار 2012