Double Amino Functionalized Ag Nanoparticles as SERS Tags in Raman Diagnostic
نویسندگان
چکیده
Surface enhanced Raman scattering (SERS) effect is currently exploited as the basis of a new type of optical labels for in vivo investigation of the tissues, especially for early medical diagnostic. Silver colloidal nanoparticles decorated with chemisorbed cresyl violet molecular species could act as hybrid SERS labels. Their Raman scattering properties have been characterized here using different SERS techniques, and probing different excitation wavelengths, even in the near infrared. Obtaining FT-SERS signal of cresyl violet is of particular importance for applying FT-Raman spectroscopy to the tissues or cells, in providing sensitive information in the close vicinity of the SERS label incubated into the biological sample. Furthermore, upon chemisorption on the silver nanoparticles, cresyl violet molecular orientation provided both amino functional groups free of interaction with the silver, resulting double aminofunctionalized Ag nanoparticles suitable for DNA tagging. SERS tests of melanoma induced in mouse using CV-Ag SERS label suggested the possibility to setup the tissue labeling procedure for skin cancer monitoring.(doi: 10.5562/cca2067)
منابع مشابه
Functionalized gold nanoparticles as nanosensor for sensitive and selective detection of silver ions and silver nanoparticles by surface-enhanced Raman scattering.
We have developed a surface-enhanced Raman scattering (SERS) nanosensor firstly for Ag ions and Ag nanoparticles detection based on 2-mercaptoisonicotinic acid (2MNA)-functionalized Au nanoparticles. Ag(+) can coordinate with 2MNA resutling in a variation of its SERS spectrum, which is used as a criterion to determine Ag(+) in a solution. This sensor exhibits a detection limit no more than 25 n...
متن کاملCarboxy-terminated immuno-SERS tags overcome non-specific aggregation for the robust detection and localization of organic media in artworks.
Methods combining immunology and surface-enhanced Raman scattering (SERS) have been developed for the simultaneous detection, identification, and localization of proteinaceous binding media found in artworks. However, complex surface topographies and heterogeneous compositions of art samples represent significant challenges for the general optimization of this technique. In particular, aggregat...
متن کاملUnification of Surface Enhanced Raman Spectroscopy of Dyes Using One Pot Synthesized Stabilized Ag Nanoparticles
stabilized Ag Nanoparticles (NPs) were synthesized using Lee-Meisel method under three different conditions in an oil bath. UV-Vis spectroscopy of the Ag NPs showed a Localized Surface Plasmon (LSP) band around 430 nm, indicating Ag NPs had a size range around 40 nm. To fabricate a surface Enhanced Raman Spectroscopy (SERS) substrate, LSP properties of Ag NPs was employed with the goal of detec...
متن کاملAntibody-functionalized SERS tags with improved sensitivity.
Protein detection at the femtomolar level can be achieved by using metallic nanoparticle assemblies that function as surface enhanced Raman spectroscopy reporters and that contain suitable surface-bound recognition elements. Proper control of the interaction between nanoparticles within the assemblies is critical for achieving this performance.
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کامل