Highly scaled silicon field emitter arrays with integrated silicon nanowire current limiters

نویسنده

  • Stephen A. Guerrera
چکیده

Field emitter arrays (FEAs) are a promising class of cold electron sources with applications in RF amplifiers, terahertz sources, lithography, imaging, and displays. FEAs are yet to achieve widely implemented because of serious challenges which have limited their viability in systems that require advanced electron sources. We identified four major challenges that posed significant barriers to the application of field emitter arrays in systems. These challenges are (1) charge injection and breakdown of the insulator between the emitter and the extraction gate, (2) thermal runaway due to Joule heating or micro-plasma discharge, (3) back-ion bombardment resulting in emitter tip damage (4) large capacitance between the gate and the substate that limits switching performance. In this thesis, we address these challenges with a new device architecture that consists of a sharp silicon emitter atop a silicon nanowire embedded in a dielectric matrix of Si0 2 and SiNg. The 10-pam tall, 200-nm diameter silicon nanowire limits current and improves reliability through velocity saturation and the pinch-off of majority carriers. The 2-um thick Si0 2 insulator between the gate and the substrate and the conformal dielectric matrix that embeds the nanowire current limiters prevents charge injection and minimizes the capacitance between the gate and the substrate. Since the nanowire current limiter is fabricated directly underneath each field emitter, we maintain an emitter density of 108 emitters/cm 2, enabling high current density. The design of the anode prevents tip erosion from back-streaming ions. These arrays demonstrate consistent current scaling of array sizes from a single emitter to 25,000 emitters, low voltage (VGE < 60V), high current density (J > 100 A/cm ), and long lifetime (t > 100 hours at 100 A/cm2 , > 100 hours at 10 A/cm2 , and > 300 hours at 100 mA/cm ). The current density enabled by our device structure is an improvement of > 10x over state-of-the art (~ 1 10 A/cm2) for Si field emission cathodes operated in a direct current mode. Our devices demonstrated a turn-on voltage as low as 8.5 V. This low-voltage enabled operation in a 500 Torr He ambient with an anode-emitter voltage below the first ionization potential of He (~ 19 V). These high current, high current density, long lifetime cold cathodes could enable new approaches to x-ray imagers, RF amplifiers, THz sources, and deep UV sources. Thesis Supervisor: Akintunde I. (Tayo) Akinwande Title: Professor

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current Limiters based on Silicon Pillar un - gated FET for Field Emission Application

This research investigates the use of vertical silicon ungated field effect transistors (FETs) as current limiters to individuallycontrol emission current in a field emitter and provide a simple solution to three problems that have plagued field emission arraysemission current uniformity, emission current stability and reliability. The ungated FET is an high aspect ratio silicon pillar individu...

متن کامل

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Silicon rice-straw array emitters and their superior electron field emission.

Free standing and vertically aligned silicon rice-straw- like array emitters were fabricated by modified electroless metal deposition (EMD), using HF-H(2)O(2) as an etching solution to reduce the emitter density and to make the emitter end of the formed silicon rice-straw arrays shaper than those formed by conventional EMD. These silicon rice-straw array emitters can be turned on at E(0) = 4.7 ...

متن کامل

Incorporation of a self-aligned selective emitter to realize highly efficient (12.8%) Si nanowire solar cells.

Formation of a selective emitter in crystalline silicon solar cells improves photovoltaic conversion efficiency by decoupling emitter regions for light absorption (moderately doped) and metallization (degenerately doped). However, use of a selective emitter in silicon nanowire (Si NW) solar cells is technologically challenging because of difficulties in forming robust Ohmic contacts that interf...

متن کامل

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016