Preconditioned Iterative Methods for Homotopy Curve Tracking

نویسندگان

  • Colin Desa
  • Kashmira M. Irani
  • Calvin J. Ribbens
  • Layne T. Watson
  • Homer F. Walker
چکیده

Homotopy algorithms are a class of methods for solving systems of nonlinear equations that are globally convergent with probability one. All homotopy algorithms are based on the construction of an appropriate homotopy map and then the tracking of a curve in the zero set of this homotopy map. The fundamental linear algebra step in these algorithms is the computation of the kernel of the homotopy Jacobian matrix. Problems with large, sparse Jacobian matrices are considered. The curve-tracking algorithms used here require the solution of a series of very special systems. In particular, each (n + 1) (n + 1) system is in general nonsymmetric but has a leading symmetric indefinite n n submatrix (typical of large structural mechanics problems, for example). Furthermore, the last row of each system may by chosen (almost) arbitrarily. The authors seek to take advantage of these special properties. The iterative methods studied here include Craig's variant of the conjugate gradient algorithm and the SYMMLQ algorithm for symmetric indefinite problems. The effectiveness of various preconditioning strategies in this context are also investigated, and several choices for the last row of the systems to be solved are explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experiments with Conjugate Gradient Algorithms for Homotopy Curve Tracking

There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing glo...

متن کامل

Improvements of two preconditioned AOR iterative methods for Z-matrices

‎In this paper‎, ‎we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix‎. ‎These methods can be considered as improvements of two previously presented ones in the literature‎. ‎Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners‎.‎

متن کامل

On the modification of the preconditioned AOR iterative method for linear system

In this paper, we will present a modification of the preconditioned AOR-type method for solving the linear system. A theorem is given to show the convergence rate of modification of the preconditioned AOR methods that can be enlarged than the convergence AOR method.

متن کامل

On the modified iterative methods for $M$-matrix linear systems

This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...

متن کامل

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1992