Jump Operations for Borel Graphs

نویسندگان

  • ADAM R. DAY
  • ANDREW S. MARKS
چکیده

We investigate the class of bipartite Borel graphs organized by the order of Borel homomorphism. We show that this class is unbounded by finding a jump operator for Borel graphs analogous to a jump operator of Louveau for Borel equivalence relations. The proof relies on a non-separation result for iterated Fréchet ideals and filters due to Debs and Saint Raymond. We give a new proof of this fact using effective descriptive set theory. We also investigate an analogue of the Friedman-Stanley jump for Borel graphs. This analogue does not yield a jump operator for bipartite Borel graphs. However, we use it to answer a question of Kechris and Marks by showing that there is a Borel graph with no Borel homomorphism to a locally countable Borel graph, but each of whose connected components has a countable Borel coloring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurable Perfect Matchings for Acyclic Locally Countable Borel graphs

We characterize the structural impediments to the existence of Borel perfect matchings for acyclic locally countable Borel graphs admitting a Borel selection of finitely many ends from their connected components. In particular, this yields the existence of Borel matchings for such graphs of degree at least three. As a corollary, it follows that acyclic locally countable Borel graphs of degree a...

متن کامل

Is the Turing Jump Unique? Martin’s Conjecture, and Countable Borel Equivalence Relations

In 1936, Alan Turing wrote a remarkable paper giving a negative answer to Hilbert’s Entscheidungsproblem [29]. Restated with modern terminology and in its relativized form, Turing showed that given any infinite binary sequence x ∈ 2ω, the set x′ of Turing machines that halt relative to x is not computable from x. This function x 7→ x′ is now known as the Turing jump, and it has played a singula...

متن کامل

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

Pseudo-Random Graphs for Fast Consensus Protocol

In this paper, we focus on the design of network topology to achieve fast information distribution. We present the information distribution performance of Borel Cayley graphs, a family of pseudo-random graphs, is far superior than that of other well-known graph families. To demonstrate the effectiveness of this pseudo-random approach, we compare the convergence speed of the average consensus pr...

متن کامل

An Improper Arithmetically Closed Borel Subalgebra of P(ω) mod FIN

We show the existence of a subalgebra A ⊆ P(ω) that satisfies the following three conditions: • A is Borel (when P(ω) is identified with 2). • A is arithmetically closed (i.e., A is closed under the Turing jump, and Turing reducibility). • The forcing notion (A,⊆) modulo the ideal FIN of finite sets collapses the continuum to א0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016