Pressure-induced cardiac overload induces upregulation of endothelial and myocardial progenitor cells.
نویسندگان
چکیده
AIM The regulation of angiogenesis in the hypertrophied overloaded heart is incompletely understood. Bone-marrow-derived progenitor cells have been shown to contribute to endothelial homeostasis, repair, and new blood vessel formation. We therefore studied the effects of pressure overload on angiogenesis and progenitor cells. METHODS AND RESULTS Pressure overload induced by transaortic constriction (TAC, C57/Bl6 mice, 360 microm for 35 days) increased left ventricular (LV) systolic pressure, the ratio of heart weight to tibia length, cardiomyocyte diameters, and cardiac apoptosis and fibrosis compared to sham-operated mice. In the TAC group, the number of cycling Ki67 pos cells increased from none to 0.1 +/- 0.02% in cardiomyocytes and from 0.17 +/- 0.02% to 0.65 +/- 0.1% in non-cardiomyocytes, P < 0.001. stem cell antigen 1(pos)/vascular endothelial growth factor receptor 2 pos endothelial progenitor cells (EPC) increased to 210 +/- 25% in the blood and to 196 +/- 21% in the bone marrow (P < 0.01). TAC upregulated cultured spleen-derived DiLDL pos/lectin pos EPC to 221 +/- 37%, P < 0.001. Cardiac hypertrophy and upregulation of EPC secondary to cardiac pressure overload were associated with increased extra-cardiac neoangiogenesis (54 +/- 12% increase, P < 0.05). In endothelial nitric oxide synthase double knockout mice, the upregulation of EPC by TAC was abolished. Maladaptive myocardial remodelling in TAC mice was characterized by a reduction of CD31 pos cells. In mice transplanted with green fluorescent protein pos bone marrow, TAC markedly increased myocardial bone marrow-derived CD31 pos cells from 2.37 +/- 0.4% to 7.76 +/- 1.5% and MEF2 pos cells from 1.8 +/- 0.4/mm2 to 20.5 +/- 5.3/mm2, P < 0.05. CONCLUSION Pressure-induced myocardial hypertrophy leads to upregulation of systemic EPCs, increased extra-cardiac angiogenesis, and upregulation of intra-myocardial bone marrow-derived endothelial and myocyte precursor cells. The data show that afterload-dependent regulation of bone marrow-derived progenitor cells contributes to angiogenesis in myocardial hypertrophy.
منابع مشابه
INHIBITION OF WNT3A DIMINISHED ANGIOGENIC DIFFERENTIATION CAPACITY OF RAT CARDIAC PROGENITOR CELLS
Background & Aims: Myocardial infarction is a leading cause of human mortality in industrialized and developing societies. Limited restorative ability of of cardiomyocytes after ischemic changes can causes extensive damage lead to prominent chronic heart failure. At present, the application of certain drugs is touted as one of the main available approaches to inhibit the spread of the lesion an...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کامل1, 25 Dihydroxyvitamin D3 Protects the Heart Against Pressure Overload-induced Hypertrophy without Affecting SIRT1 mRNA Level
Background and Aims: There has been scant information concerning antihypertrophic effects of vitamin D specifically on its cellular and molecular mechanisms. Sirtuin 1 (SIRT1) is regarded as a key deacetylase enzyme in cardiomyocytes which applies potential cardioprotective effects by functional regulation of different proteins. This study aimed to evaluate the effects of 1, 25-dihydroxyvitamin...
متن کاملRoles of intercellular adhesion molecule-1 in hypertensive cardiac remodeling.
Recently, we have shown that in rats with a suprarenal abdominal aortic constriction (AC), pressure overload induces early perivascular fibro-inflammatory changes (transforming growth factor [TGF]-beta induction and fibroblast proliferation) within the first week after AC and then causes the development of cardiac remodeling (myocyte hypertrophy and reactive myocardial fibrosis) associated with...
متن کاملAre Stem Cells the next Therapeutic Tool for Heart Repair?
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 77 1 شماره
صفحات -
تاریخ انتشار 2008