Detection of mental fatigue using an active BCI inspired signal processing chain

نویسنده

  • R. N. Roy
چکیده

This paper presents a novel electro-encephalography (EEG) signal processing chain designed to classify two levels of mental fatigue that appears after having spent a long time on a tedious task. The decrease in vigilance associated with mental fatigue makes it a dangerous state for operators in charge of complex systems. The processing chain, inspired from active brain computer interface computing, is implemented as follows: the EEG signal is initially filtered in a given frequency band and 15 electrodes out of 32 are then selected using a method based on Riemannian geometry. Next, a spatial filtering step is carried out using 6 common spatial pattern (CSP) filters. Lastly, a binary classification is performed using Fisher’s linear discriminant analysis (FLDA). The features used are the log variance of the 6 CSP filtered signals. The results obtained on 20 healthy volunteers are excellent with 100% of accuracy when the beta band is used. These performances drop to 84% and 68% when the same data are processed with a traditional signal processing chain where fatigue is classified by means of a FLDA classifier fed by the averaged power, or relative power, in the beta band extracted from 15 selected electrodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification

Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states.  Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...

متن کامل

The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface

As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous rando...

متن کامل

Experimental and numerical study of delamination detection in a WGF/epoxy composite plate using ultrasonic guided waves and signal processing tools

Reliable damage detection is one of the most critical tasks in composite plate structures. Ultrasonic guided waves are acknowledged as an effective way of structural health mo...

متن کامل

Real-time damage detection of bridges using adaptive time-frequency analysis and ANN

Although traditional signal-based structural health monitoring algorithms have been successfully employed for small structures, their application for large and complex bridges has been challenging due to non-stationary signal characteristics with a high level of noise. In this paper, a promising damage detection algorithm is proposed by incorporation of adaptive signal processing and Artificial...

متن کامل

طراحی و ساخت یک سیستم تشخیص خواب آلودگی راننده مبتنی بر پردازش‌گر سیگنال TMS320C5509A

Every year, many people lose their lives in road traffic accidents while driving vehicles throughout the world. Providing secure driving conditions highly reduces road traffic accidents and their associated death rates. Fatigue and drowsiness are two major causes of death in these accidents; therefore, early detection of driver drowsiness can greatly reduce such accidents. Results of NTSB inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014