New Turnpike Theorems for the Unbounded Knapsack Problem

نویسندگان

  • Ping Heidi Huang
  • Thomas L. Morin
چکیده

We develop sharp bounds on turnpike theorems for the unbounded knapsack problem. Turnpike theorems specify when it is optimal to load at least one unit of the best item (i.e., the one with the highest “bang-for-buck” ratio) and, thus can be used for problem preprocessing. The successive application of the turnpike theorems can drastically reduce the size of the knapsack problems to be solved. Two of our theorems subsume known results as special cases. The third one is an entirely different result. We show that all three theorems specify sharp bounds in the sense that no smaller bounds can be found under the assumed conditions. We also prove that two of the bounds can be obtained in constant time. Computational results on randomly generated problems demonstrate the effectiveness of the turnpike theorems both in terms of how often they can be applied and the resulting reduction in the size of the knapsack problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem

In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operator...

متن کامل

Dynamic-Programming-Based Inequalities for the Unbounded Integer Knapsack Problem

We propose a new hybrid approach to solve the unbounded integer knapsack problem (UKP), where valid inequalities are generated based on intermediate solutions of an equivalent forward dynamic programming formulation. These inequalities help tighten the initial LP relaxation of the UKP, and therefore improve the overall computational efficiency. We also extended this approach to solve the multi-...

متن کامل

A cross entropy algorithm for the Knapsack problem with setups

In this article we propose a new metaheuristic-based algorithm for the Integer Knapsack Problem with Setups. This problem is a generalization of the standard Integer Knapsack Problem, complicated by the presence of setup costs in the objective function as well as in the constraints. We propose a cross entropy based algorithm, where the metaheuristic scheme allows to relax the original problem t...

متن کامل

Algorithms for 3D guillotine cutting problems: Unbounded knapsack, cutting stock and strip packing

We present algorithms for the following three-dimensional (3D) guillotine cutting problems: Unbounded Knapsack, Cutting Stock and Strip Packing. We consider the case where the items have fixed orientation and the case where orthogonal rotations around all axes are allowed. For the Unbounded 3D Knapsack problem, we extend the recurrence formula proposed by Beasley for the Rectangular Knapsack Pr...

متن کامل

A note on the extension complexity of the knapsack polytope

We show that there are 0-1 and unbounded knapsack polytopes with super-polynomial extension complexity. More specifically, for each n ∈ N we exhibit 0-1 and unbounded knapsack polyhedra in dimension n with extension complexity Ω(2 p n).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008