Evolving Fuzzy Neural Network for Phishing Emails Detection
نویسندگان
چکیده
One of the broadly used internet attacks to deceive customers financially in banks and agencies is unknown “zero-day” phishing Emails “zero-day” phishing Emails is a new phishing email that it has not been trained on old dataset, not included in black list. Accordingly, the current paper seeks to Detection and Prediction of unknown “zero-day” phishing Emails by provide a new framework called Phishing Evolving Neural Fuzzy Framework (PENFF) that is based on adoptive Evolving Fuzzy Neural Network (EFuNN). PENFF does the process of detection of phishing email depending on the level of features similarity between body email and URL email features. The totality of the common features vector is controlled by EFuNN to create rules that help predict the phishing email value in online mode. The proposed framework has proved its ability to detect phishing emails by decreasing the error rate in classification process. The current approach is considered a highly compacted framework. As a performance indicator; the Root Mean Square Error (RMSE) and Non-Dimensional Error Index (NDEI) has 0.12 and 0.21 respectively, which has low error rate compared with other approaches Furthermore, this approach has learning capability with footprint consuming memory.
منابع مشابه
Phishing Dynamic Evolving Neural Fuzzy Framework for Online Detection Zero-day Phishing Email
Phishing is a kind of attack in which criminals use spoofed emails and fraudulent web sites to trick financial organization and customers. Criminals try to lure online users by convincing them to reveal the username, passwords, credit card number and updating account information or fill billing information. One of the main problems of phishing email detection is the unknown “zero-day” phishing ...
متن کاملDetection of Phishing Emails using Feed Forward Neural Network
Phishing emails are messages designed to fool the recipient into handing over personal information, such as login names, passwords, credit card numbers, account credentials, social security numbers etc. Fraudulent emails harm their victims through loss of funds and identity theft. They also hurt Internet business, because people lose their trust in Internet transactions for fear that they will ...
متن کاملAn Efficient Approach Based on Neuro-Fuzzy for Phishing Detection
In the Internet era, the online trading of various fields is growing quickly. As a result, cyber crime is increasing constantly. Phishing is a new type of crime aimed at stealing user information via these fake web pages. Most of these phishing web pages look similar to the real web pages in terms of website interface and uniform resource locator (URL) address. Many techniques have been propose...
متن کاملIntelligent Security for Phishing Online using Adaptive Neuro Fuzzy Systems
Anti-phishing detection solutions employed in industry use blacklist-based approaches to achieve low falsepositive rates, but blacklist approaches utilizes website URLs only. This study analyses and combines phishing emails and phishing web-forms in a single framework, which allows feature extraction and feature model construction. The outcome should classify between phishing, suspicious, legit...
متن کاملPhishing Detection Using Neural Network
The goal of this project is to apply multilayer feedforward neural networks to phishing email detection and evaluate the effectiveness of this approach. We design the feature set, process the phishing dataset, and implement the neural network (NN) systems. We then use cross validation to evaluate the performance of NNs with different numbers of hidden units and activation functions. We also com...
متن کامل