Quantitative morphometry of perifoveal capillary networks in the human retina.
نویسندگان
چکیده
PURPOSE To quantify the distribution and morphometric characteristics of capillary networks in the human perifovea. To determine correlations between the location of neuronal subcellular compartments and the morphometric features of regional capillary networks in the layered retina. METHODS The perifoveal region, located 2 mm nasal to the fovea, was studied in 17 human donor eyes. Novel micropipette technology was used to cannulate the central retinal artery and label the retinal microcirculation using a phalloidin perfusate. γ-synuclein, Goα, and parvalbumin antibodies were also used to co-localize the nerve fiber layer (NFL), retinal ganglion cell layer (RGCL), inner plexiform layer (IPL), and inner nuclear layer (INL). Confocal scanning laser microscopy was used for capillary imaging. Capillary diameter, capillary density, and capillary loop area measurements were compared between networks. RESULTS Four capillary networks were identified in the following retinal layers: (1) NFL, (2) RGCL and superficial portion of IPL, (3) deep portion of IPL and superficial portion of INL, and (4) deep portion of INL. Laminar configurations were present in NFL and deep INL networks. Remaining networks demonstrated three-dimensional configurations. Capillary density was greatest in the networks serving the IPL. Capillary loop area was smallest in the two innermost networks. There was no difference in capillary diameter between networks. CONCLUSIONS Capillary networks in the human perifovea are morphometrically heterogeneous. Morphometric features of regional capillary networks in the layered retina may serve a critical role in supporting neuronal homeostasis. Improved knowledge of these features may be important for understanding pathogenic mechanisms underlying retinal vascular diseases.
منابع مشابه
Prognostic significance of foveal capillary drop-out and previous panretinal photocoagulation for diabetic macular oedema treated with ranibizumab.
AIMS To investigate the prognostic significance of macular capillary drop-out and previous panretinal laser photocoagulation in diabetic macular oedema treated with intravitreal ranibizumab. METHODS Retrospective observational case series. Treatment-naive patients with diabetic macular oedema that had been treated with intravitreal ranibizumab as per the RESTORE study protocol for at least 12...
متن کاملRetinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network.
The new scanning laser technique allows one to quantify the retinal microcirculation. A digital image analysing system was used to study capillary blood flow velocities and morphological parameters of perifoveal intercapillary areas and foveal avascular zones in normal and diabetic subjects. Diabetic patients showed a significant reduction in capillary blood cell velocities in comparison with n...
متن کاملPerifoveal microcirculation in eyes with epiretinal membranes.
BACKGROUND/AIMS Eyes with epiretinal membranes (ERMs) often have alterations of retinal vessels. The authors studied perifoveal microcirculation in eyes with epiretinal membranes (ERMs) using scanning laser ophthalmoscope (SLO) fluorescein angiography. METHODS Mean capillary blood flow velocity (CFV) was measured as an index of perifoveal microcirculation by SLO fluorescein angiography in 26 ...
متن کاملProgression of Diabetic Capillary Occlusion: A Model
An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability o...
متن کاملQuantitative confocal imaging of the retinal microvasculature in the human retina.
PURPOSE We investigated quantitatively the distribution of blood vessels in different neural layers of the human retina. METHODS A total of 16 human donor eyes was perfusion-fixed and labeled for endothelial f-actin. Retinal eccentricity located 3 mm superior to the optic disk was studied using confocal scanning laser microscopy. Immunohistochemical methods applied to whole-mount and transver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 53 9 شماره
صفحات -
تاریخ انتشار 2012