ar X iv : m at h / 99 09 11 4 v 2 [ m at h . A P ] 6 D ec 1 99 9 Completion of Linear Differential Systems to Involution

نویسنده

  • Vladimir P. Gerdt
چکیده

In this paper we generalize the involutive methods and algorithms devised for polynomial ideals to differential ones generated by a finite set of linear differential polynomials in the differential polynomial ring over a zero characteristic differential field. Given a ranking of derivative terms and an involutive division, we formulate the involutivity conditions which form a basis of involutive algorithms. We present an algorithm for computation of a minimal involutive differential basis. Its correctness and termination hold for any constructive and noetherian involutive division. As two important applications we consider posing of an initial value problem for a linear differential system providing uniqueness of its solution and the Lie symmetry analysis of nonlinear differential equations. In particular, this allows to determine the structure of arbitrariness in general solution of linear systems and thereby to find the size of symmetry group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 99 12 03 8 v 1 [ m at h . A G ] 6 D ec 1 99 9 Mirror Principle III

We generalize the theorems in Mirror Principle I and II to the case of general projective manifolds without the convexity assumption. We also apply the results to balloon manifolds, and generalize to higher genus.

متن کامل

ar X iv : h ep - t h / 94 12 09 9 v 1 1 2 D ec 1 99 4 Poisson Poincaré groups

We present almost complete list of normal forms of classical r-matrices on the Poincaré group.

متن کامل

ar X iv : h ep - t h / 99 12 07 5 v 2 1 4 D ec 1 99 9 SMI - 15 - 99 Two - Loop Diagrams in Noncommutative φ 44 theory

Explicit two-loop calculations in noncommutative ϕ 4 4 theory are presented. It is shown that the model is two-loop renormalizable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999