Dissipation and Controlled Euler-Poincaré Systems

نویسندگان

  • C. A. Woolsey
  • A. M. Bloch
  • N. E. Leonard
  • J. E. Marsden
چکیده

The method of controlled Lagrangians is a technique for stabilizing underactuated mechanical systems which involves modifying a system’s energy and dynamic structure through feedback. These modifications can obscure the effect of physical dissipation in the closed-loop. For example, generic damping can destabilize an equilibrium which is closed-loop stable for a conservative system model. In this paper, we consider the effect of damping on Euler-Poincaré (special reduced Lagrangian) systems which have been stabilized about an equilibrium using the method of controlled Lagrangians. We describe a choice of feedback dissipation which asymptotically stabilizes a sub-class of controlled Euler-Poincaré systems subject to physical damping. As an example, we consider intermediate axis rotation of a damped rigid body with a single internal rotor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Stabilization of Euler-poincaré Mechanical Systems

Stabilization of mechanical control systems by the method of controlled Lagrangians and matching is used to analyze asymptotic stabilization of systems whose underlying dynamics are governed by the Euler-Poincaré equations. In particular, we analyze asymptotic stabilization of a satellite. Copyright c © 2000 IFAC

متن کامل

The Euler-Poincaré Equations and Double Bracket Dissipation

This paper studies the perturbation of a Lie-Poisson (or, equivalently an Euler-Poincaré) system by a special dissipation term that has Brockett’s double bracket form. We show that a formally unstable equilibrium of the unperturbed system becomes a spectrally and hence nonlinearly unstable equilibrium after the perturbation is added. We also investigate the geometry of this dissipation mechanis...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

Geometry and integrability of Euler–Poincaré–Suslov equations

We consider nonholonomic geodesic flows of left-invariant metrics and left-invariant nonintegrable distributions on compact connected Lie groups. The equations of geodesic flows are reduced to the Euler–Poincaré–Suslov equations on the corresponding Lie algebras. The Poisson and symplectic structures give raise to various algebraic constructions of the integrable Hamiltonian systems. On the oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001