Replication dynamics of Mycobacterium tuberculosis in chronically infected mice.
نویسندگان
چکیده
The dynamics of host-pathogen interactions have important implications for the design of new antimicrobial agents to treat chronic infections such as tuberculosis (TB), which is notoriously refractory to conventional drug therapy. In the mouse model of TB, an acute phase of exponential bacterial growth in the lungs is followed by a chronic phase characterized by relatively stable numbers of bacteria. This equilibrium could be static, with little ongoing replication, or dynamic, with continuous bacterial multiplication balanced by bacterial killing. A static model predicts a close correspondence between "viable counts" (live bacteria) and "total counts" (live plus dead bacteria) in the lungs over time. A dynamic model predicts the divergence of total counts and viable counts over time due to the accumulation of dead bacteria. Here, viable counts are defined as bacterial CFU enumerated by plating lung homogenates; total counts are defined as bacterial chromosome equivalents (CEQ) enumerated by using quantitative real-time PCR. We show that the viable and total bacterial counts in the lungs of chronically infected mice do not diverge over time. Rapid degradation of dead bacteria is unlikely to account for the stability of bacterial CEQ numbers in the lungs over time, because treatment of mice with isoniazid for 8 weeks led to a marked reduction in the number of CFU without reducing the number of CEQ. These observations support the hypothesis that the stable number of bacterial CFU in the lungs during chronic infection represents a static equilibrium between host and pathogen.
منابع مشابه
Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms.
Nonreplicating and metabolically quiescent bacteria are implicated in latent tuberculosis infections and relapses following "sterilizing" chemotherapy. However, evidence linking bacterial dormancy and persistence in vivo is largely inconclusive. Here we measure the single-cell dynamics of Mycobacterium tuberculosis replication and ribosomal activity using quantitative time-lapse microscopy and ...
متن کاملTIM3 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection
While T cell immunity initially limits Mycobacterium tuberculosis infection, why T cell immunity fails to sterilize the infection and allows recrudescence is not clear. One hypothesis is that T cell exhaustion impairs immunity and is detrimental to the outcome of M. tuberculosis infection. Here we provide functional evidence for the development T cell exhaustion during chronic TB. Second, we ev...
متن کاملTumor necrosis factor neutralization combined with chemotherapy enhances Mycobacterium tuberculosis clearance and reduces lung pathology.
Tuberculosis (TB) is a major health problem requiring sustained immunity to inhibit Mycobacterium tuberculosis growth and appropriate antimicrobial therapy to prevent dissemination and drug resistance. Cell-mediated immune responses to M. tuberculosis involve the activation of cytokines such as Tumor Necrosis Factor (TNF) which is critical for granuloma formation and host resistance against TB....
متن کاملA study on the immune response induced by a DNA vaccine encoding Mtb32C-HBHA antigen of Mycobacterium tuberculosis
Objective(s): Tuberculosis (TB) has still remained a global health issue. One third of the world's population is infected with tuberculosis and the current BCG vaccine has low efficiency; hence, it is necessary to develop a new vaccine against TB. The aim of the current study was to evaluate the efficiency of a novel DNA vaccine encoding Mtb32C-HBHA antigen in inducing specific immune responses...
متن کاملInvolvement of IL‐17A‐producing TCR γδ T cells in late protective immunity against pulmonary Mycobacterium tuberculosis infection
INTRODUCTION Interleukin (IL)-17A is a cytokine originally reported to induce neutrophil-mediated inflammation and anti-microbial activity. The CD4+ T cells, which produce IL-17A, have been well characterized as Th17 cells. On the other hand, IL-17A-producing TCR γδ+ T cells have been reported to participate in the immune response at an early stage of infection with Listeria monocytogenes and M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2005