Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury
نویسندگان
چکیده
Axon regeneration after injury to the adult mammalian CNS is limited in part by three inhibitory proteins in CNS myelin: Nogo-A, MAG, and OMgp. All three of these proteins bind to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth in vitro. To explore the necessity of NgR for responses to myelin inhibitors and for restriction of axonal growth in the adult CNS, we generated ngr(-/-) mice. Mice lacking NgR are viable but display hypoactivity and motor impairment. DRG neurons lacking NgR do not bind Nogo-66, and their growth cones are not collapsed by Nogo-66. Recovery of motor function after dorsal hemisection or complete transection of the spinal cord is improved in the ngr(-/-) mice. While corticospinal fibers do not regenerate in mice lacking NgR, regeneration of some raphespinal and rubrospinal fibers does occur. Thus, NgR is partially responsible for limiting the regeneration of certain fiber systems in the adult CNS.
منابع مشابه
Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury.
The growth of injured axons in the adult mammalian CNS is limited after injury. Three myelin proteins, Nogo, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin glycoprotein), bind to the Nogo-66 receptor (NgR) and inhibit axonal growth in vitro. Transgenic or viral blockade of NgR function allows axonal sprouting in vivo. Here, we administered the soluble function-blocking N...
متن کاملThe Nogo-66 receptor: focusing myelin inhibition of axon regeneration.
CNS myelin inhibits axonal outgrowth in vitro and is one of several obstacles to functional recovery following spinal cord injury. Central to our current understanding of myelin-mediated inhibition are the membrane protein Nogo and the Nogo-66 receptor (NgR). New findings implicate NgR as a point of convergence in signal transduction for several myelin-associated inhibitors. Additional studies ...
متن کاملDelayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury.
Traumatized axons possess an extremely limited ability to regenerate within the adult mammalian CNS. The myelin-derived axon outgrowth inhibitors Nogo, oligodendrocyte-myelin glycoprotein, and myelin-associated glycoprotein, all bind to an axonal Nogo-66 receptor (NgR) and at least partially account for this lack of CNS repair. Although the intrathecal application of an NgR competitive antagoni...
متن کاملRecovery from chronic spinal cord contusion after Nogo receptor intervention.
OBJECTIVE Several interventions promote axonal growth and functional recovery when initiated shortly after central nervous system injury, including blockade of myelin-derived inhibitors with soluble Nogo receptor (NgR1, RTN4R) decoy protein. We examined the efficacy of this intervention in the much more prevalent and refractory condition of chronic spinal cord injury. METHODS We eliminated th...
متن کاملA multi-domain fragment of Nogo-A protein is a potent inhibitor of cortical axon regeneration via Nogo receptor 1.
Nogo-A limits axon regeneration and functional recovery after central nervous system injury in adult mammals. Three regions of Nogo-A (Nogo-A-24, Nogo-66, and Nogo-C39) interact with the neuronal Nogo-66 receptor 1 (NgR1). Nogo-66 also interacts with a structurally unrelated cell surface receptor, paired immunoglobulin-like receptor (PirB). We show here that the other two NgR1-interacting domai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 44 شماره
صفحات -
تاریخ انتشار 2004