Neutralization of nerve growth factor induces plasticity of ATP-sensitive P2X3 receptors of nociceptive trigeminal ganglion neurons.
نویسندگان
چکیده
The molecular mechanisms of migraine pain are incompletely understood, although migraine mediators such as NGF and calcitonin gene-related peptide (CGRP) are believed to play an algogenic role. Although NGF block is proposed as a novel analgesic approach, its consequences on nociceptive purinergic P2X receptors of trigeminal ganglion neurons remain unknown. We investigated whether neutralizing NGF might change the function of P2X3 receptors natively coexpressed with NGF receptors on cultured mouse trigeminal neurons. Treatment with an NGF antibody (24 h) decreased P2X3 receptor-mediated currents and Ca2+ transients, an effect opposite to exogenously applied NGF. Recovery from receptor desensitization was delayed by anti-NGF treatment without changing desensitization onset. NGF neutralization was associated with decreased threonine phosphorylation of P2X3 subunits, presumably accounting for their reduced responses and slower recovery. Anti-NGF treatment could also increase the residual current typical of heteromeric P2X2/3 receptors, consistent with enhanced membrane location of P2X2 subunits. This possibility was confirmed with cross-linking and immunoprecipitation studies. NGF neutralization also led to increased P2X2e splicing variant at mRNA and membrane protein levels. These data suggest that NGF controlled plasticity of P2X3 subunits and their membrane assembly with P2X2 subunits. Despite anti-NGF treatment, CGRP could still enhance P2X3 receptor activity, indicating separate NGF- or CGRP-mediated mechanisms to upregulate P2X3 receptors. In an in vivo model of mouse trigeminal pain, anti-NGF pretreatment suppressed responses evoked by P2X3 receptor activation. Our findings outline the important contribution by NGF signaling to nociception of trigeminal sensory neurons, which could be counteracted by anti-NGF pretreatment.
منابع مشابه
The Mechanism of Functional Up-Regulation of P2X3 Receptors of Trigeminal Sensory Neurons in a Genetic Mouse Model of Familial Hemiplegic Migraine Type 1 (FHM-1)
A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unc...
متن کاملDelayed upregulation of ATP P2X3 receptors of trigeminal sensory neurons by calcitonin gene-related peptide.
Recent evidence indicates a key role for the neuropeptide calcitonin gene-related peptide (CGRP) in migraine pain, as demonstrated by the strong analgesic action of CGRP receptor antagonists, although the mechanisms of this effect remain unclear. Most trigeminal nociceptive neurons releasing CGRP also express ATP-activated purinergic P2X3 receptors to transduce pain. To understand whether the C...
متن کاملASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons
BACKGROUND ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1) ASIC3 might trigger ischemic pain in heart and muscle; 2) it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrop...
متن کاملAdenosine triphosphate drives head and neck cancer pain through P2X2/3 heterotrimers
INTRODUCTION Cancer pain creates a poor quality of life and decreases survival. The basic neurobiology of cancer pain is poorly understood. Adenosine triphosphate (ATP) and the ATP ionotropic receptor subunits, P2X2 and P2X3, mediate cancer pain in animal models; however, it is unknown whether this mechanism operates in human, and if so, what the relative contribution of P2X2- and P2X3-containi...
متن کاملMutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice
BACKGROUND ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 31 شماره
صفحات -
تاریخ انتشار 2007