Divergent transcriptional activities determine limb identity
نویسندگان
چکیده
Limbs develop using a common genetic programme despite widely differing morphologies. This programme is modulated by limb-restricted regulators such as hindlimb (HL) transcription factors Pitx1 and Tbx4 and the forelimb (FL) Tbx5. Both Tbx factors have been implicated in limb patterning and growth, but their relative activities and underlying mechanisms remain unclear. In this paper, we show that Tbx4 and Tbx5 harbour conserved and divergent transcriptional regulatory domains that account for their roles in limb development. In particular, both factors share an activator domain and the ability to stimulate limb growth. However, we find that Tbx4 is the primary effector of HL identity for both skeletal and muscle development; this activity relies on a repressor domain that is inactivated by a human TBX4 small-patella syndrome mutation. We propose that limb identity is largely achieved by default in FL, whereas a specific repressor activity unique to Tbx4 determines HL identity.
منابع مشابه
Hoxd13 expression in the developing limbs of the short-tailed fruit bat, Carollia perspicillata.
Bat forelimbs are highly specialized for sustained flight, providing a unique model to explore the genetic programs that regulate vertebrate limb diversity. Hoxd9-13 genes are important regulators of stylopodium, zeugopodium, and autopodium development and thus evolutionary changes in their expression profiles and biochemical activities may contribute to divergent limb morphologies in vertebrat...
متن کاملDlx5- and Dlx6-mediated chondrogenesis: Differential domain requirements for a conserved function
During endochondral ossification in the vertebrate limb, multipotent mesenchymal cells first differentiate into chondroblasts (chondrogenesis) that further differentiate (via chondrocyte hypertrophy) to a terminal cellular phenotype. Dlx5 and Dlx6 are functionally redundant regulators of chondrocyte hypertrophy. We now show that Dlx5 and Dlx6 also regulate the earlier step of chondrogenesis in ...
متن کاملA Hox Regulatory Network Establishes Motor Neuron Pool Identity and Target-Muscle Connectivity
Spinal motor neurons acquire specialized "pool" identities that determine their ability to form selective connections with target muscles in the limb, but the molecular basis of this striking example of neuronal specificity has remained unclear. We show here that a Hox transcriptional regulatory network specifies motor neuron pool identity and connectivity. Two interdependent sets of Hox regula...
متن کاملDistal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13
The combinatorial expression of Hox genes along the body axes is a major determinant of cell fate and plays a pivotal role in generating the animal body plan. Loss of HOXA13 and HOXD13 transcription factors (HOX13) leads to digit agenesis in mice, but how HOX13 proteins regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here, we report on t...
متن کاملDistinct Roles of Hand2 in Initiating Polarity and Posterior Shh Expression during the Onset of Mouse Limb Bud Development
The polarization of nascent embryonic fields and the endowment of cells with organizer properties are key to initiation of vertebrate organogenesis. One such event is antero-posterior (AP) polarization of early limb buds and activation of morphogenetic Sonic Hedgehog (SHH) signaling in the posterior mesenchyme, which in turn promotes outgrowth and specifies the pentadactylous autopod. Inactivat...
متن کامل