Robust Facial Expression Recognition Using Spatially Localized Geometric Model
نویسندگان
چکیده
An efficient, local image-based approach for extraction of intransient facial features and recognition of four facial expressions from 2D image sequences is presented. The algorithm uses edge projection analysis for feature extraction and creates a dynamic spatio-temporal representation of the face, followed by classification through a feed-forward net with one hidden layer. A novel transform for extracting lip region for color face images based on Gaussian modeling of skin and lip color is proposed. The proposed lip transform for colored images results in better extraction of lip region in the feature extraction stage. The algorithm achieves an accuracy of 90.0% for facial expression recognition from grayscale image sequences.
منابع مشابه
A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملSpontaneous facial expression recognition: A robust metric learning approach
Spontaneous facial expression recognition is significantly more challenging than recognizing posed ones. We focus on two issues that are still under-addressed in this area. First, due to the inherent subtlety, the geometric and appearance features of spontaneous expressions tend to overlap with each other, making it hard for classifiers to find effective separation boundaries. Second, the train...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004