Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site.

نویسندگان

  • E R Goedken
  • S Marqusee
چکیده

Ribonuclease H (RNase H) selectively degrades the RNA strand of RNA.DNA hybrids in a divalent cation-dependent manner. Previous structural studies revealed a single Mg(2+) ion-binding site in Escherichia coli RNase HI. In the crystal structure of the related RNase H domain of human immunodeficiency virus reverse transcriptase, however, two Mn(2+) ions were observed suggesting a different mode of metal binding. E. coli RNase HI shows catalytic activity in the presence of Mg(2+) or Mn(2+) ions, but these two metals show strikingly different optimal concentrations. Mg(2+) ions are required in millimolar concentrations, but Mn(2+) ions are only required in micromolar quantities. Based upon the metal dependence of E. coli RNase HI activity, we proposed an activation/attenuation model in which one metal is required for catalysis, and binding of a second metal is inhibitory. We have now solved the co-crystal structure of E. coli RNase HI with Mn(2+) ions at 1.9-A resolution. Two octahedrally coordinated Mn(2+) ions are seen to bind to the enzyme-active site. Residues Asp-10, Glu-48, and Asp-70 make direct (inner sphere) coordination contacts to the first (activating) metal, whereas residues Asp-10 and Asp-134 make direct contacts to the second (attenuating) metal. This structure is consistent with biochemical evidence suggesting that two metal ions may bind RNase H but liganding a second ion inhibits RNase H activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation/attenuation model for RNase H. A one-metal mechanism with second-metal inhibition.

Ribonucleases H (RNases H) comprise a family of metal-dependent enzymes that catalyze the hydrolysis of the 3'-O---P bond of RNA in RNA.DNA hybrids. The mechanism by which RNases H use active-site metal(s) for catalysis is unclear. Based upon the seemingly contradictory structural observations of one divalent metal bound to Escherichia coli RNase HI and two divalent metals bound to the HIV RNas...

متن کامل

Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors.

Human immunodeficiency virus (HIV) RNase H activity is essential for the synthesis of viral DNA by HIV reverse transcriptase (HIV-RT). RNA cleavage by RNase H requires the presence of divalent metal ions, but the role of metal ions in the mechanism of RNA cleavage has not been resolved. We measured HIV RNase H activity associated with HIV-RT protein in the presence of different concentrations o...

متن کامل

Divalent metal cofactor binding in the kinetic folding trajectory of Escherichia coli ribonuclease HI.

Proteins often require cofactors to perform their biological functions and must fold in the presence of their cognate ligands. Using circular dichroism spectroscopy. we investigated the effects of divalent metal binding upon the folding pathway of Escherichia coli RNase HI. This enzyme binds divalent metal in its active site, which is proximal to the folding core of RNase HI as defined by hydro...

متن کامل

Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis

Escherichia coli ribonuclease III (RNase III; EC 3.1.24) is a double-stranded(ds)-RNA-specific endonuclease with key roles in diverse RNA maturation and decay pathways. E.coli RNase III is a member of a structurally distinct superfamily that includes Dicer, a central enzyme in the mechanism of RNA interference. E.coli RNase III requires a divalent metal ion for activity, with Mg2+ as the prefer...

متن کامل

Metal binding and activation of the ribonuclease H domain from moloney murine leukemia virus.

The RNase H family of enzymes degrades RNA in RNA.DNA hybrids in a divalent cation-dependent manner. RNases H from diverse sources such as Escherichia coli and human immunodeficiency virus (HIV) share homologous metal-binding active sites, and the activity of the RNase H domain of reverse transcriptase (RT) is required for retroviral replication. The isolated RNase H domain from HIV RT, however...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 10  شماره 

صفحات  -

تاریخ انتشار 2001