A Non-Linear Control Method to Compensate for Muscle Fatigue during Neuromuscular Electrical Stimulation

نویسندگان

  • Nitin Sharma
  • Nicholas Kirsch
  • Naji Alibeji
  • Warren E. Dixon
چکیده

Neuromuscular electrical stimulation (NMES) is a promising technique to artificially activate muscles as a means to potentially restore the capability to perform functional tasks in persons with neurological disorders. A pervasive problem with NMES is that overstimulation of the muscle (among other factors) leads to rapid muscle fatigue, which limits the use of clinical and commercial NMES systems. The objective of this article is to develop an NMES controller that incorporates the effects of muscle fatigue during NMES-induced non-isometric contraction of the human quadriceps femoris muscle. Our previous work that used the RISE class of non-linear controllers cannot accommodate fatigue and muscle activation dynamics. A totally new control design approach and associated stability proof is required to derive a new class of NMES control design that accounts for muscle fatigue dynamics and a first-order activation dynamics, in addition to the second-order musculoskeletal dynamics. Motivated from a control method for robotic systems in a strict-feedback form, a backstepping based-non-linear NMES controller was designed to accommodate for the additional muscle activation dynamics. Further, experimentally identified estimates of the fatigue and activation dynamics were incorporated in the control design. The developed controller uses a neural networkbased estimate of the musculoskeletal dynamics and error due to fatigue estimation. A globally uniformly ultimately bounded stability is proven the new controller that accounts for an uncertain non-linear muscle model and bounded non-linear disturbances (e.g., spasticity and changing load dynamics). The developed controller was validated through experiments on the left and right legs of 3 able-bodied subjects and was compared with a proportional-derivative (PD) controller and a PD augmented with a neural network. The statistical analysis showed improved control performance compared with the PD controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Method to Reduce Muscle Fatigue During Transcutaneous Neuromuscular Electrical Stimulation in Major Knee and Ankle Muscle Groups.

BACKGROUND A critical limitation with transcutaneous neuromuscular electrical stimulation as a rehabilitative approach is the rapid onset of muscle fatigue during repeated contractions. We have developed a method called spatially distributed sequential stimulation (SDSS) to reduce muscle fatigue by distributing the center of electrical field over a wide area within a single stimulation site, us...

متن کامل

A novel modulation strategy to increase stimulation duration in neuromuscular electrical stimulation.

INTRODUCTION Neuromuscular electrical stimulation (NMES) has been shown to be an effective treatment for muscular dysfunction. Yet, a fundamental barrier to NMES treatments is the rapid onset of muscle fatigue. The purpose of this study is to examine the effect of feedback-based frequency modulation on the closed-loop performance of the quadriceps during repeated dynamic contractions. METHODS...

متن کامل

Muscle fatigue: clinical implications for fatigue assessment and neuromuscular electrical stimulation.

Muscle fatigue can be defined as a decrease in the force-generating ability of a muscle that resulted from recent activity. Recent studies of muscle fatigue are reviewed that are relevant to two areas of interest to physical therapists: clinical assessment of muscle fatigue and neuromuscular electrical stimulation. Volitional and electrical tests have been used to quantify muscle fatigue. Sever...

متن کامل

LYAPUNOV-BASED NEUROMUSCULAR ELECTRICAL STIMULATION CONTROL By QIANG WANG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA

of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy LYAPUNOV-BASED NEUROMUSCULAR ELECTRICAL STIMULATION CONTROL By Qiang Wang December 2012 Chair: Warren E. Dixon Major: Electrical and Computer Engineering Neuromuscular electrical stimulation (NMES) or functional electrical stimulation (F...

متن کامل

Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Front. Robotics and AI

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017