Magnetic Resonance in Medicine 63:502–509 (2010) IIR GRAPPA for Parallel MR Image Reconstruction

نویسندگان

  • Zhaolin Chen
  • Jingxin Zhang
  • Ran Yang
  • Peter Kellman
  • Leigh A. Johnston
  • Gary F. Egan
چکیده

Accelerated parallel MRI has advantage in imaging speed, and its image quality has been improved continuously in recent years. This paper introduces a two-dimensional infinite impulse response model of inverse filter to replace the finite impulse response model currently used in generalized autocalibrating partially parallel acquisitions class image reconstruction methods. The infinite impulse response model better characterizes the correlation of k-space data points and better approximates the perfect inversion of parallel imaging process, resulting in a novel generalized image reconstruction method for accelerated parallel MRI. This k-space-based reconstruction method includes the conventional generalized autocalibrating partially parallel acquisitions class methods as special cases and has a new infinite impulse response data estimation mechanism for effective improvement of image quality. The experiments on in vivo MRI data show that the proposed method significantly reduces reconstruction errors compared with the conventional two-dimensional generalized autocalibrating partially parallel acquisitions method, particularly at the high acceleration rates. Magn Reson Med 63:502–509, 2010. © 2009 Wiley-Liss, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RT-GROG: parallelized self-calibrating GROG for real-time MRI.

A real-time implementation of self-calibrating Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) operator gridding for radial acquisitions is presented. Self-calibrating GRAPPA operator gridding is a parallel-imaging-based, parameter-free gridding algorithm, where coil sensitivity profiles are used to calculate gridding weights. Self-calibrating GRAPPA operator gridding's wei...

متن کامل

Optimized parallel imaging for dynamic PC-MRI with multidirectional velocity encoding.

Phase contrast MRI with multidirectional velocity encoding requires multiple acquisitions of the same k-space lines to encode the underlying velocities, which can considerably lengthen the total scan time. To reduce scan time, parallel imaging is often applied. In dynamic phase contrast MRI using standard generalized autocalibrating partially parallel acquisitions (GRAPPA), several central k-sp...

متن کامل

Generalized autocalibrating partially parallel acquisitions (GRAPPA).

In this study, a novel partially parallel acquisition (PPA) method is presented which can be used to accelerate image acquisition using an RF coil array for spatial encoding. This technique, GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is an extension of both the PILS and VD-AUTO-SMASH reconstruction techniques. As in those previous methods, a detailed, highly accurate R...

متن کامل

Iterative IIR GRAPPA: A Novel Improved Method for Parallel MRI

INTRODUCTION GRAPPA [1] is one of the most popular image reconstruction methods for Parallel MRI. This method interpolates downsampled k-space data with moving average (MA) kernel estimated using a set of fully acquired Auto-Calibrating Signal (ACS) lines in kspace; consequently, its reconstruction quality depends greatly on the estimation and generality of the kernel. Improving kernel estimati...

متن کامل

Parallel MR imaging.

Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010