TOPICAL REVIEW Temperature- and pH-Induced Structural Changes in the Membrane of the Hyperthermophilic Archaeon Aeropyrum pernix K1
نویسندگان
چکیده
The influence of pH and temperature on the structural organization, fluidity and permeability of the hyperthermophilic archaeon membrane was investigated in situ by a combination of electron paramagnetic resonance (EPR) and fluorescence emission spectroscopy. For EPR measurements, Aeropyrum pernix cells, after growing at different pHs, were spin-labeled with the doxyl derivative of palmitic acid methylester (MeFASL[10,3]). From the EPR spectra maximal hyperfine splitting (2Amax) and empirical correlation time (semp), which are related to mean membrane fluidity, were determined. The mean membrane fluidity increases with temperature and depends on the pH of the growth medium. Computer simulation of the EPR spectra shows that membrane of A. pernix is heterogeneous and consists of the regions characterized with three different types of motional characteristics, which define three types of membrane domains. Order parameter and proportion of the spin probes in the three types of domains define mean membrane fluidity. The fluidity changes of the membrane with pH and temperature correlate well with the ratio between the fluorescence emission intensity of the first and third bands in the vibronic spectra of pyrene, I1/I3. At pH 7.0 a decrease of I1/I3 from 2.0 to 1.2, due to the penetration of pyrene into the nonpolar membrane region, is achieved at temperatures above 65 C, the lower temperature limit of A. pernix growth.
منابع مشابه
Molecular recognition of proline tRNA by prolyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1.
To investigate the recognition mechanism of tRNA(Pro) by prolyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1, various tRNA(Pro) transcripts were prepared by in vitro transcription system. These transcripts were aminoacylated with proline by overexpressed A. pernix prolyl-tRNA synthetase. From prolylation experiments, recognition elements of A. pernix tRNA(Pro) were deter...
متن کاملCharacterization of a novel thermostable O-acetylserine sulfhydrylase from Aeropyrum pernix K1.
An O-acetylserine sulfhydrylase (OASS) from the hyperthermophilic archaeon Aeropyrum pernix K1, which shares the pyridoxal 5'-phosphate binding motif with both OASS and cystathionine beta-synthase (CBS), was cloned and expressed by using Escherichia coli Rosetta(DE3). The purified protein was a dimer and contained pyridoxal 5'-phosphate. It was shown to be an enzyme with CBS activity as well as...
متن کاملMolecular characterization and postsplicing fate of three introns within the single rRNA operon of the hyperthermophilic archaeon Aeropyrum pernix K1.
The single rRNA operon (arnS-arnL) of the hyperthermophilic archaeon Aeropyrum pernix K1 was sequenced. The DNA sequence data and detailed RNA analyses disclosed an unusual feature: the presence of three introns at hitherto undescribed insertion positions within the rRNA genes. The 699-nucleotide (nt) intron Ialpha was located at position 908 (Escherichia coli numbering [H. F. Noller, Annu. Rev...
متن کاملAeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney.
A novel hyperthermophilic archaeon, designated strain SY1(T), was isolated from a deep-sea hydrothermal vent chimney sample collected from the Suiyo Seamount in the Izu-Bonin Arc, Japan, at a depth of 1385 m. The cells were irregular cocci (1.2 to 2.1 micro m in diameter), occurring singly or in pairs, and stained Gram-negative. Growth was observed between 70 and 97 degrees C (optimum, 85 degre...
متن کاملCytotoxicity and uptake of archaeosomes prepared from Aeropyrum pernix lipids.
Archaeon Aeropyrum pernix K1 is an obligate aerobic hyperthermophilic organism with C25,25-archeol membrane lipids with head groups containing inositol. Interactions of archaeosomes, liposomes prepared from lipids of A. pernix, with mammalian cells in vitro were studied. In vitro cytotoxicity was tested on five different cell lines: rodent mouse melanoma cells (B16-F1) and Chinese hamster ovary...
متن کامل