Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels.
نویسندگان
چکیده
We have recently identified a novel form of post-translational regulation of BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1), a membrane protein that acts as the rate-limiting enzyme in the generation of the Alzheimer disease amyloid beta-peptide. Specifically, nascent BACE1 is transiently acetylated in seven lysine residues clustered in a highly disordered region of the protein that faces the lumen of the endoplasmic reticulum (ER)/ER Golgi intermediate compartment (ER/ERGIC). The acetylation protects the nascent protein from degradation by PCSK9/NARC-1 in the ERGIC and allows it to reach the Golgi apparatus. Here we report the identification of two ER/ERGIC-based acetyltransferases, ATase1 and ATase2. Both proteins display acetyl-CoA:lysine acetyltransferase activity, can interact with and acetylate BACE1, and display an ER/ERGIC localization with the catalytic site facing the lumen of the organelle. Both ATase1 and ATase2 regulate the steady-state levels of BACE1 and the rate of amyloid beta-peptide generation. Finally, their transcripts are up-regulated by ceramide treatment. In conclusion, our studies have identified two new enzymes that may be involved in the pathogenesis of late-onset Alzheimer disease. The biochemical characterization of the above events could lead to the identification of novel pharmacological strategies for the prevention of this form of dementia.
منابع مشابه
AT-1 is the ER membrane acetyl-CoA transporter and is essential for cell viability.
The transient or permanent modification of nascent proteins in the early secretory pathway is an essential cellular function that ensures correct folding and maturation of membrane and secreted proteins. We have recently described a new form of post-translational regulation of the membrane protein β-site APP cleaving enzyme 1 (BACE1) involving transient lysine acetylation in the lumen of the en...
متن کاملTargeting of Protein ERGIC-53 to the ER/ERGIC/cis-Golffl Recycling Pathway
ERGIC-53 is a lectin-type membrane protein that continuously recycles between the ER, ERGolgi intermediate compartment (ERGIC) and the cisGolgi. To identify the targeting signals that mediate this recycling, N-glycosylated and myc-tagged variants of ERGIC-53 were constructed. By monitoring endoglycosidase H resistance, we measured the loss from the ER-ERGIC-cis-Golgi cycle of ERGIC-53. A domain...
متن کاملRab proteins of the endoplasmic reticulum: functions and interactors.
Whereas most of what we know today about the Ras-related small GTPases of the Rab family stems from observations made on Golgi complex, endosome and plasma membrane trafficking, a subset of Rabs localizes in part or predominantly to the ER (endoplasmic reticulum). Here, Rabs such as Rab1, Rab2, Rab6 and Rab33 can regulate the anterograde and retrograde trafficking of vesicles between the Golgi ...
متن کاملThe Sec61 complex is located in both the ER and the ER-Golgi intermediate compartment.
The heteromeric Sec61 complex is composed of (alpha), beta and (gamma) subunits and forms the core of the mammalian ER translocon. Oligomers of the Sec61 complex form a transmembrane channel where proteins are translocated across and integrated into the ER membrane. We have studied the subcellular localisation of the Sec61 complex using both wild-type COS1 cells and cells transfected with GFP-t...
متن کاملContact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER
Protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus is mediated by coat complex II (COPII) vesicles. It has been believed that COPII vesicles containing cargo are released from the ER exit sites (ERES) into the cytosol and then reach and fuse with the first post-ER compartment, cis-Golgi or ER-to-Golgi intermediate compartment (ERGIC). However, it still remains elusive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 4 شماره
صفحات -
تاریخ انتشار 2009