Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status.
نویسندگان
چکیده
We measured respiration of 20-year-old Pinus radiata D. Don trees growing in control (C), irrigated (I), and irrigated + fertilized (IL) stands in the Biology of Forest Growth experimental plantation near Canberra, Australia. Respiration was measured on fully expanded foliage, live branches, boles, and fine and coarse roots to determine the relationship between CO(2) efflux, tissue temperature, and biomass or nitrogen (N) content of individual tissues. Efflux of CO(2) from foliage (dark respiration at night) and fine roots was linearly related to biomass and N content, but N was a better predictor of CO(2) efflux than biomass. Respiration (assumed to be maintenance) per unit N at 15 degrees C and a CO(2) concentration of 400 micro mol mol(-1) was 1.71 micro mol s(-1) mol(-1) N for foliage and 11.2 micro mol s(-1) mol(-1) N for fine roots. Efflux of CO(2) from stems, coarse roots and branches was linearly related to sapwood volume (stems) or total volume (branches + coarse roots) and growth, with rates for maintenance respiration at 15 degrees C ranging from 18 to 104 micro mol m(-3) s(-1). Among woody components, branches in the upper canopy and small diameter coarse roots had the highest respiration rates. Stem maintenance respiration per unit sapwood volume did not differ among treatments. Annual C flux was estimated by summing (1) dry matter production and respiration of aboveground components, (2) annual soil CO(2) efflux minus aboveground litterfall, and (3) the annual increment in coarse root biomass. Annual C flux was 24.4, 25.3 and 34.4 Mg ha(-1) year(-1) for the C, I and IL treatments, respectively. Total belowground C allocation, estimated as the sum of (2) and (3) above, was equal to the sum of root respiration and estimated root production in the IL treatment, whereas in the nutrient-limited C and I treatments, total belowground C allocation was greater than the sum of root respiration and estimated root production, suggesting higher fine root turnover or increased allocation to mycorrhizae and root exudation. Carbon use efficiency, the ratio of net primary production to assimilation, was similar among treatments for aboveground tissues (0.43-0.50). Therefore, the proportion of assimilation used for construction and maintenance respiration on an annual basis was also similar among treatments.
منابع مشابه
Carbon partitioning in Pinus radiata stands in relation to foliage nitrogen status.
First rotation Pinus radiata D. Don trees were grown on a nitrogen-deficient sand dune in an experimental design that included lupin (Lupinus arboreus Sims) as an understory species, and biennial application of balanced fertilizer in a replicated split-plot factorial design with thinning treatments as subplots. From an initial 2222 stems ha(-1), stands were thinned to 1483 and 741 trees ha(-1) ...
متن کاملEctomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.
Variations in ectomycorrhizal (EcM) short root tips of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in 16 stands throughout Finland were studied, and their relationships with latitude, organic layer C:N ratio, temperature sum and foliage biomass were determined. There were no significant differences in EcM root tip frequency (number per milligram of fine roots) o...
متن کاملOptimal co-allocation of carbon and nitrogen in a forest stand at steady state.
Nitrogen (N) is essential for plant production, but N uptake imposes carbon (C) costs through maintenance respiration and fine-root construction, suggesting that an optimal C:N balance can be found. Previous studies have elaborated this optimum under exponential growth; work on closed canopies has focused on foliage only. Here, the optimal co-allocation of C and N to foliage, fine roots and liv...
متن کاملRespiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations: the effect of site resources on the stand carbon balance
We used estimates of autotrophic respiration (RA), net primary productivity (NPP) and soil CO2 evolution (Sff), to develop component carbon budgets for 12-year-old loblolly pine plantations during the fifth year of a fertilization and irrigation experiment. Annual carbon use in RA was 7.5, 9.0, 15.0, and 15.1MgCha 1 in control (C), irrigated (I), fertilized (F) and irrigated and fertilized (IF)...
متن کاملFine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands.
Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 16 3 شماره
صفحات -
تاریخ انتشار 1996