Tracking Antibody Distribution with Near-Infrared Fluorescent Dyes: Impact of Dye Structure and Degree of Labeling on Plasma Clearance
نویسندگان
چکیده
Monoclonal antibodies labeled with near-infrared (NIR) fluorophores have potential use in disease detection, intraoperative imaging, and pharmacokinetic characterization of therapeutic antibodies in both the preclinical and clinical setting. Recent work has shown conjugation of NIR fluorophores to antibodies can potentially alter antibody disposition at a sufficiently high degree of labeling (DoL); however, other reports show minimal impact after labeling with NIR fluorophores. In this work, we label two clinically approved antibodies, Herceptin (trastuzumab) and Avastin (bevacizumab), with NIR dyes IRDye 800CW (800CW) or Alexa Fluor 680 (AF680), at 1.2 and 0.3 dyes/antibody and examine the impact of fluorophore conjugation on antibody plasma clearance and tissue distribution. At 0.3 DoL, AF680 conjugates exhibited similar clearance to unlabeled antibody over 17 days while 800CW conjugates diverged after 4 days, suggesting AF680 is a more suitable choice for long-term pharmacokinetic studies. At the 1.2 DoL, 800CW conjugates cleared faster than unlabeled antibodies after several hours, in agreement with other published reports. The tissue biodistribution for bevacizumab-800CW and -AF680 conjugates agreed well with literature reported biodistributions using radiolabels. However, the greater tissue autofluorescence at 680 nm resulted in limited detection above background at low (∼2 mg/kg) doses and 0.3 DoL for AF680, indicating that 800CW is more appropriate for short-term biodistribution measurements and intraoperative imaging. Overall, our work shows a DoL of 0.3 or less for non-site-specifically labeled antibodies (with a Poisson distribution) is ideal for limiting the impact of NIR fluorophores on antibody pharmacokinetics.
منابع مشابه
Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control.
A method is presented for the preparation of a biocompatible ferrofluid containing dye-functionalized magnetite nanoparticles that can serve as fluorescent markers. This method entails the surface functionalization of magnetite nanoparticles using citric acid to produce a stable aqueous dispersion and the subsequent binding of fluorescent dyes to the surface of the particles. Several ferrofluid...
متن کاملCell type-specific delivery of short interfering RNAs by dye-functionalised theranostic nanoparticles
Efficient delivery of short interfering RNAs reflects a prerequisite for the development of RNA interference therapeutics. Here, we describe highly specific nanoparticles, based on near infrared fluorescent polymethine dye-derived targeting moieties coupled to biodegradable polymers. The fluorescent dye, even when coupled to a nanoparticle, mimics a ligand for hepatic parenchymal uptake transpo...
متن کاملSpecific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer.
Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis. In order to overcome these problems, we have used two NIR dyes (DyLight 650 and 750) conjugated to a chimeric anti-c...
متن کاملWound healing monitoring using near infrared fluorescent fibrinogen
We demonstrate a method for imaging the wound healing process with near infrared fluorescent fibrinogen. Wound healing studies were performed on a rat punch biopsy model. Fibrinogen was conjugated with a near infrared fluorescent dye and injected into the tail vein. Fibrinogen is a useful protein for tracking wound healing because it is involved in fibrin clot formation and formation of new pro...
متن کامل"Microenvironmental contaminations" induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking.
Determining how normal and leukemic stem cells behave in vivo, in a dynamic and noninvasive way, remains a major challenge. Most optical tracking technologies rely on the use of fluorescent or bioluminescent reporter genes, which need to be stably expressed in the cells of interest. Because gene transfer in primary leukemia samples represents a major risk to impair their capability to engraft i...
متن کامل