In vivo functional microangiography by visible-light optical coherence tomography.
نویسندگان
چکیده
Although hemoglobin oxygen saturation (sO2) in the microvasculature is an essential physiological parameter of local tissue functions, non-invasive measurement of microvascular sO2 is still challenging. Here, we demonstrated that visible-light optical coherence tomography (vis-OCT) can simultaneously provide three-dimensional anatomical tissue morphology, visualize microvasculature at the capillary level, and measure sO2 from the microvasculature in vivo. We utilized speckle contrast caused by the moving blood cells to enhance microvascular imaging. We applied a series of short-time inverse Fourier transforms to obtain the spectroscopic profile of blood optical attenuation, from which we quantified sO2. We validated the sO2 measurement in mouse ears in vivo through hypoxia and hyperoxia challenges. We further demonstrated that vis-OCT can continuously monitor dynamic changes of microvascular sO2.
منابع مشابه
Doppler optical microangiography improves the quantification of local fluid flow and shear stress within 3-D porous constructs.
Traditional phase-resolved Doppler optical coherence tomography (DOCT) has been reported to have potential for characterizing local fluid flow within a microporous scaffold. In this work, we apply Doppler optical microangiography (DOMAG), a new imaging technique developed by combining optical microangiography (OMAG) with a phase-resolved method, for improved assessment of local fluid flow and i...
متن کاملIntervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow.
We demonstrate in vivo volumetric optical microangiography at ∼ 200 volumes/s by the use of 1.6 MHz Fourier domain mode-locking swept source optical coherence tomography and an effective 36 kHz microelectromechanical system (MEMS) scanner. We propose an intervolume analysis strategy to contrast the dynamic blood flow signal from the static tissue background. The proposed system is demonstrated ...
متن کاملVisible-light optical coherence tomography: a review.
Visible-light optical coherence tomography (vis-OCT) is an emerging imaging modality, providing new capabilities in both anatomical and functional imaging of biological tissue. It relies on visible light illumination, whereas most commercial and investigational OCTs use near-infrared light. As a result, vis-OCT requires different considerations in engineering design and implementation but bring...
متن کاملStructural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope.
The design of a multi-functional fiber-based Optical Coherence Tomography (OCT) system for human retinal imaging with < 2 micron axial resolution in tissue is described. A detailed noise characterization of two supercontinuum light sources with different pulse repetition rates is presented. The higher repetition rate and lower noise source is found to enable a sensitivity of 96 dB with 0.15 mW ...
متن کاملDepth-resolved 3D visualization of coronary microvasculature with optical microangiography.
In this study, we propose a novel implementation of optical coherence tomography-based angiography combined with ex vivo perfusion of fixed hearts to visualize coronary microvascular structure and function. The extracorporeal perfusion of Intralipid solution allows depth-resolved angiographic imaging, control of perfusion pressure, and high-resolution optical microangiography. The imaging techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical optics express
دوره 5 10 شماره
صفحات -
تاریخ انتشار 2014