Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library.
نویسندگان
چکیده
For patients with solid tumors, the tolerance of surrounding tissues often limits the dose of radiation that can be delivered. Thus, agents that preferentially increase the cytotoxic effects of radiation toward tumor cells would significantly alter the therapeutic ratio and improve patient survival. Using a high-throughput, unbiased screening approach, we have identified 4'-bromo-3'-nitropropiophenone (NS-123) as a radiosensitizer of human glioma cells in vitro and in vivo. NS-123 radiosensitized U251 glioma cells in a dose-dependent and time-dependent manner, with dose enhancement ratios ranging from 1.3 to 2.0. HT-29 colorectal carcinoma and A549 lung adenocarcinoma cells were also radiosensitized by NS-123 in vitro, whereas NS-123 did not increase the radiation sensitivity of normal human astrocytes or developmental abnormalities or lethality of irradiated Zebrafish embryos. In a novel xenograft model of U251 cells implanted into Zebrafish embryos, NS-123 enhanced the tumor growth-inhibitory effects of ionizing radiation (IR) with no apparent effect on embryo development. Similar results were obtained using a mouse tumor xenograft model in which NS-123 sensitized U251 tumors to IR while exhibiting no overt toxicity. In vitro pretreatment with NS-123 resulted in accumulation of unrepaired IR-induced DNA strand breaks and prolonged phosphorylation of the surrogate markers of DNA damage H2AX, ataxia telangiectasia mutated protein, DNA-dependent protein kinase, and CHK2 after IR, suggesting that NS-123 inhibits a critical step in the DNA repair pathway. These results show the potential of this cell-based, high-throughput screening method to identify novel radiosensitizers and suggest that NS-123 and similar nitrophenol compounds may be effective in antiglioma modalities.
منابع مشابه
Concise and diversity-oriented synthesis of novel scaffolds embedded with privileged benzopyran motif.
A branching DOS strategy for an unbiased natural product-like library with embedded privileged benzopyran motif was established to provide complexity and diversity of resulting heterocycles with desired drug-likeness. The importance of skeletal diversity conducted on a privileged substructure was demonstrated through the biological evaluation of a small molecule library representing 22 unique c...
متن کاملIdentification of Novel p53 Pathway Activating Small-Molecule Compounds Reveals Unexpected Similarities with Known Therapeutic Agents
Manipulation of the activity of the p53 tumor suppressor pathway has demonstrated potential benefit in preclinical mouse tumor models and has entered human clinical trials. We describe here an improved, extensive small-molecule chemical compound library screen for p53 pathway activation in a human cancer cell line devised to identify hits with potent antitumor activity. We uncover six novel sma...
متن کاملGreen Chemical Synthesis and Biological Evaluation of Novel N-substituted Rhodanine Derivatives as Potential Antifungal Agents
Background and purpose: In medicinal chemistry, molecules containing rhodanine(2-thiazolidine-4-one) ring as a magic multifunctional privileged structural and functional scaffold show a broad range of potent pharmacological properties containing anti-microbial, antiviral, anti-diabetic, and anti-convulsant effects. Evidence suggests that the activity of the rhodanine derivative correlates with ...
متن کاملIdentification of Biologically Active, HIV TAR RNA-Binding Small Molecules Using Small Molecule Microarrays
Identifying small molecules that selectively bind to structured RNA motifs remains an important challenge in developing potent and specific therapeutics. Most strategies to find RNA-binding molecules have identified highly charged compounds or aminoglycosides that commonly have modest selectivity. Here we demonstrate a strategy to screen a large unbiased library of druglike small molecules in a...
متن کاملAssessment of "drug-likeness" of a small library of natural products using chemoinformatics
Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 18 شماره
صفحات -
تاریخ انتشار 2007