A Note on Operator Biprojectivity of Compact Quantum Groups
نویسنده
چکیده
Given a (reduced) locally compact quantum group A, we can consider the convolution algebra L(A) (which can be identified as the predual of the von Neumann algebra form of A). It is conjectured that L(A) is operator biprojective if and only if A is compact. The “only if” part always holds, and the “if” part holds for Kac algebras. We show that if the splitting morphism associated with L(A) being biprojective can be chosen to be completely positive, or just contractive, then we already have a Kac algebra. We give another proof of the converse, indicating how modular properties of the Haar state seem to be important.
منابع مشابه
Compact weighted Frobenius-Perron operators and their spectra
In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.
متن کاملBiflatness and biprojectivity of the Fourier algebra
We show that the biflatness—in the sense of A. Ya. Helemskĭı—of the Fourier algebra A(G) of a locally compact groupG forcesG to either have an abelian subgroup of finite index or to be non-amenable without containing F2 as a closed subgroup. An analogous dichotomy is obtained for biprojectivity.
متن کاملReiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras
متن کامل
Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملAlgebraic Quantum Hypergroups
An algebraic quantum group is a regular multiplier Hopf algebra with integrals. In this paper we will develop a theory of algebraic quantum hypergroups. It is very similar to the theory of algebraic quantum groups, except that the comultiplication is no longer assumed to be a homomorphism. We still require the existence of a left and of a right integral. There is also an antipode but it is char...
متن کامل