Activation of A431 human carcinoma cell motility by extracellular high-mobility group box 1 protein and epidermal growth factor stimuli.
نویسندگان
چکیده
HMGB1 (high-mobility group box 1) protein, a pleiotropic cytokine released by several cell types under physiological and pathological conditions, has been identified as a signal molecule active on A431 cells. Although extracellular HMGB1 itself does not trigger any detectable signalling effect on these cells, it induces an increased susceptibility to EGF (epidermal growth factor) stimulation. Specifically, at concentrations of EGF which promote undetectable or limited cell responses, the addition of sub-nanomolar concentrations of HMGB1 potentiates the effect of EGF by specifically activating a downstream pathway that leads to enhanced cell motility through an increase in Ca2+ influx, activation of extracellular-signal-regulated kinase 1/2 and remodelling of the actin cytoskeleton. These results, which identify extracellular HMGB1 as an activator of human tumour cell migration operating in concert with EGF, have important implications in the search for novel strategies to control tumour progression and metastatic invasion.
منابع مشابه
Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility.
EphA2 overexpression has been reported in many cancers and is believed to play an important role in tumor metastasis and angiogenesis. We show that the activated epidermal growth factor receptor (EGFR) and the cancer-specific constitutively active EGFR type III deletion mutant (EGFRvIII) induce the expression of EphA2 in mammalian cell lines, including the human cancer cell lines A431 and HN5. ...
متن کاملThe Transcription Factor AP-1 Is Required for EGF-induced Activation of Rho-like GTPases, Cytoskeletal Rearrangements, Motility, and In Vitro Invasion of A431 Cells
Human squamous cell carcinomas (SCC) frequently express elevated levels of epidermal growth factor receptor (EGFR). EGFR overexpression in SCC-derived cell lines correlates with their ability to invade in an in vitro invasion assay in response to EGF, whereas benign epidermal cells, which express low levels of EGFR, do not invade. EGF-induced invasion of SCC-derived A431 cells is inhibited by s...
متن کاملOverexpression of High-Mobility Motor Box 1 in the Blood and Tissues of Patients with Head and Neck Squamous Cell Carcinoma
Introduction: Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world. Extra- and intra-cellular high-mobility motor box 1 (HMGB1) proteins are invovled in the pathogenesis and prognosis of cancer. Regarding this, the present study was conducted with the aim of investigating the expression of HMGB1 protein and mRNA levels in the blood, tumor tissue, and mar...
متن کاملHypoxia Activated EGFR Signaling Induces Epithelial to Mesenchymal Transition (EMT)
Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT). EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epi...
متن کاملHigh mobility group Box-1 inhibits cancer cell motility and metastasis by suppressing activation of transcription factor CREB and nWASP expression
The ability to metastasize is a hallmark of malignant tumors, and metastasis is the principal cause of death of cancer patients. The High Mobility Group Box-1 (HMGB1) is a multifunction protein that serves as both a chromatin protein and an extracellular signaling molecule. Our current study demonstrated a novel mechanism of HMGB1 in the regulation of cancer cell actin polymerization, cell skel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 389 Pt 1 شماره
صفحات -
تاریخ انتشار 2005