Dynamics and Aeroelasticity of Hover Capable Flapping Wings: Experiments and Analysis
نویسندگان
چکیده
Title of dissertation: DYNAMICS AND AEROELASTICITY OF HOVER CAPABLE FLAPPING WINGS: EXPERIMENTS AND ANALYSIS Beerinder Singh, Doctor of Philosophy, 2006 Dissertation directed by: Professor Inderjit Chopra Department of Aerospace Engineering This dissertation addresses the aerodynamics of insect-based, bio-inspired, flapping wings in hover. An experimental apparatus, with a bio-inspired flapping mechanism, was used to measure the thrust generated for a number of wing designs. Bio-Inspired flapping-pitching mechanisms reported in literature, usually operate in oil or water at very low flapping frequencies (∼ 0.17 Hz). In contrast, the mechanism used in this study operates in air, at relatively high frequencies (∼ 12 Hz). All the wings tested showed a decrease in thrust at high frequencies. A novel mechanism with passive pitching of the wing, caused by aeroelastic forces, was also tested. Flow visualization images, which show the salient features of the airflow, were also acquired. At high flapping frequencies, the light-weight and highly flexible wings used in this study exhibited significant aeroelastic effects. For this reason, an aeroelastic analysis for hover-capable, bio-inspired flapping wings was developed. A finite element based structural analysis of the wing was used, alongwith an unsteady aerodynamic analysis based on indicial functions. The analysis was validated with experimental data available in literature, and also with experimental tests conducted on the bio-inspired flapping-pitching mechanism. Results for both elastic and rigid wing analyses were compared with the thrust measured on the bio-inspired flapping-pitching mechanism. DYNAMICS AND AEROELASTICITY OF HOVER-CAPABLE FLAPPING WINGS: EXPERIMENTS AND ANALYSIS
منابع مشابه
NUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS
Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...
متن کاملFlapping Wing CFD/CSD Aeroelastic Formulation Based on a Co-rotational Shell Finite Element
Flexible flapping wings have garnered a large amount of attention within the micro aerial vehicle (MAV) community: a critical component of MAV flight is the coupling of aerodynamics and structural dynamics. This paper presents a computational framework for simulating shell-like wing structures flapping in incompressible flow at low Reynolds numbers in both hover and forward flight. The framewor...
متن کاملComputational Aeroelasticity Framework for Analyzing Flapping Wing Micro Air Vehicles
Due to their small size and flight regime, coupling of aerodynamics, structural dynamics, and flight dynamics is critical for Micro Aerial Vehicles. This paper presents a computational framework for simulating structural models of varied fidelity and a Navier-Stokes solver, aimed at simulating flapping and flexible wings. The structural model utilizes either (i) the in-house developed UM/NLABS,...
متن کاملFlight Dynamic Stability of a Flapping Wing Micro Air Vehicle in Hover
This paper discusses a methodology of analyzing the flight dynamic stability of a flapping wing Micro Air Vehicle (MAV) in hover. The flexible flapping wings are modeled by a strain-based geometrically nonlinear beam formulation, coupled with an empirical aerodynamic formulation for load calculation on the wings surfaces. Wing flapping kinematics is described using a set of Euler angles. Nonlin...
متن کاملLoading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method
The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...
متن کامل