Spatial cue reliability drives frequency tuning in the barn Owl's midbrain

نویسندگان

  • Fanny Cazettes
  • Brian J Fischer
  • Jose L Pena
چکیده

The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of midbrain and thalamic space-specific neurons in barn owls.

Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory ...

متن کامل

Auditory spatial tuning at the crossroads of the midbrain and forebrain.

The barn owl's midbrain and forebrain contain neurons tuned to sound direction. The spatial receptive fields of these neurons result from sensitivity to combinations of interaural time (ITD) and level (ILD) differences over a broad frequency range. While a map of auditory space has been described in the midbrain, no similar topographic representation has been found in the forebrain. The first n...

متن کامل

Multiplicative Auditory Spatial Receptive Fields Created by a Hierarchy of Population Codes

A multiplicative combination of tuning to interaural time difference (ITD) and interaural level difference (ILD) contributes to the generation of spatially selective auditory neurons in the owl's midbrain. Previous analyses of multiplicative responses in the owl have not taken into consideration the frequency-dependence of ITD and ILD cues that occur under natural listening conditions. Here, we...

متن کامل

Title: Variability Reduction in Interaural Time Difference Tuning in the Barn Owl Running Head: Variability Reduction in the Barn Owl's Auditory System

The interaural time difference (ITD) is the primary auditory cue used by the barn owl for localization in the horizontal direction. ITD is initially computed by circuits consisting of axonal delay lines from one of the cochlear nuclei and coincidence detector neurons in the nucleus laminaris (NL). NL projects directly to the anterior part of the dorsal lateral lemniscal nucleus (LLDa) and this ...

متن کامل

Population-wide bias of surround suppression in auditory spatial receptive fields of the owl's midbrain.

The physical arrangement of receptive fields (RFs) within neural structures is important for local computations. Nonuniform distribution of tuning within populations of neurons can influence emergent tuning properties, causing bias in local processing. This issue was studied in the auditory system of barn owls. The owl's external nucleus of the inferior colliculus (ICx) contains a map of audito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014