LES of additive and non-additive pulsatile flows in a model arterial stenosis.

نویسندگان

  • M Mamun Molla
  • Manosh C Paul
  • Giles Roditi
چکیده

Transition of additive and non-additive pulsatile flows through a simple 3D model of arterial stenosis is investigated by using a large eddy simulation (LES) technique. We find in both the pulsatile cases that the interaction of the two shear layers, one of which separates from the nose of the stenosis and the another one from its opposite wall, causes recirculation in the flow downstream of the stenosis where the nature of the transient flow becomes turbulent. The strength of this recirculation is found to be quite high from the non-additive pulsations when the flow Reynolds numbers, Re>or=1500, for which both the pressure and shearing stresses take on an oscillating form at the post-stenotic region. Potential medical consequences of these results are discussed in the paper. In addition, some comparisons of the non-additive pulsatile results are given with those of both the additive pulsatile and steady flows. The capability of using LES to simulate the pulsatile transitional flow is also assessed, and the present results show that the smaller (subgrid) scales (SGS) contributes about 78% energy dissipation to the flow when the Reynolds number is taken as 2000. The level of SGS dissipation decreases as the Reynolds number is decreased. The numerical results are validated with the experimental data available in literature where a quite good agreement is found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

Large-Eddy simulation of pulsatile blood flow.

Large-Eddy simulation (LES) is performed to study pulsatile blood flow through a 3D model of arterial stenosis. The model is chosen as a simple channel with a biological type stenosis formed on the top wall. A sinusoidal non-additive type pulsation is assumed at the inlet of the model to generate time dependent oscillating flow in the channel and the Reynolds number of 1200, based on the channe...

متن کامل

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

Numerical Study of Hemodynamic Wall Parameters on Pulsatile Flow through Arterial Stenosis

In this paper hemodynamic wall parameters which play an important role to diagnose arterial disease were studied and compared for three different rheology models (Newtonian, Power law and Quemada). Also because of the pulsatile behavior of blood flow the results were obtained for three Womersley numbers which represent the frequencies of the applied pulses. Results show that Quemada model alway...

متن کامل

Impact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion

The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer methods in biomechanics and biomedical engineering

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2010