Inhibitory effects of antioxidant reagent in reactive oxygen species generation and penetration of appressoria of Alternaria alternata Japanese pear pathotype.

نویسندگان

  • Gang-Su Hyon
  • Ken-Ichi Ikeda
  • Naoki Hosogi
  • Takeshi Shinogi
  • Pyoyun Park
چکیده

In the Japanese pear pathotype of Alternaria alternata, H2O2 is generated solely from penetration pegs and not from other portions of subcuticular hyphae within the pectin layers of host leaves. A close association between H2O2 generation and fungal aggressiveness is expected because the pegs are important for fungal penetration into the host epidermis. To determine the potential role of reactive oxygen species in microbial pathogenicity, we studied the inhibitory effects of the antioxidant reagent ascorbic acid and the NADPH oxidase inhibitor diphenylene iodonium on infection of the pathogen. In our study, we showed H2O2 generation to be inhibited by inoculation with the mixture of ascorbic acid or diphenylene iodonium and spores at the pegs in the spore-inoculated host leaves. The decrease of generation in the pegs resulted in penetration failure, indicating that H2O2 generation probably contributed to strengthening of the penetration and probably was recruited by NADPH oxidase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress

The tangerine pathotype of Alternaria alternata produces the A. citri toxin (ACT) and is the causal agent of citrus brown spot that results in significant yield losses worldwide. Both the production of ACT and the ability to detoxify reactive oxygen species (ROS) are required for A. alternata pathogenicity in citrus. In this study, we report the 34.41 Mb genome sequence of strain Z7 of the tang...

متن کامل

Physical mapping of black spot disease resistance/susceptibility-related genome regions in Japanese pear (Pyrus pyrifolia) by BAC-FISH

Black spot disease, caused by Alternaria alternata Japanese pear pathotype, is one of the most harmful diseases in Japanese pear cultivation. In the present study, the locations of black spot disease resistance/susceptibility-related genome regions were studied by fluorescence in situ hybridization using BAC clone (BAC-FISH) on Japanese pear (Pyrus pyrifolia (Burm. f.) Nakai) chromosomes. Root ...

متن کامل

Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes: a Review

In vitro maturation (IVM) is emerging as a popular technology at the forefront of fertility treatment and preservation. However, standard in vitro culture conditions usually increase reactive oxygen species (ROS), which have been implicated as one of the major causes for reduced embryonic developmental competence. It is well-known that higher than physiological levels of ROS triggers granulosa ...

متن کامل

A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata.

The filamentous fungus Alternaria alternata contains seven pathogenic variants (pathotypes), which produce host-specific toxins and cause diseases on different plants. Previously, the gene cluster involved in host-specific AK-toxin biosynthesis of the Japanese pear pathotype was isolated, and four genes, named AKT genes, were identified. The AKT homologs were also found in the strawberry and ta...

متن کامل

Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata

The production of host-selective toxins by the necrotrophic fungus Alternaria alternata is essential for the pathogenesis. A. alternata infection in citrus leaves induces rapid lipid peroxidation, accumulation of hydrogen peroxide (H2O2), and cell death. The mechanisms by which A. alternata avoids killing by reactive oxygen species (ROS) after invasion have begun to be elucidated. The ability t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 100 9  شماره 

صفحات  -

تاریخ انتشار 2010