Bessel, Frame and Riesz Multipliers

نویسنده

  • PETER BALAZS
چکیده

Abstract. This paper introduces the concept of Bessel and frame multipliers. These operators are defined by a fixed pattern, called the symbol, which is used after analysis, before synthesis. This concept is a generalization of Gabor multipliers. It allows specialization to any analysis/synthesis systems, that form Bessel sequences, like e.g. wavelet frames. Basic properties of this general class of operators are investigated in this paper. In particular the connection of the class of the symbol to the class of the operators is specified. The question, how the operator depends on a perturbation of the frames or the symbol, is also treated. As a special case the multipliers for Riesz bases are examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bessel multipliers on the tensor product of Hilbert $C^ast-$‎ modules‎

In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...

متن کامل

Classification, Approximation by Multipliers and Algorithms

In this paper we deal with the connection of frames with the class of Hilbert Schmidt operators. First we give an easy criteria for operators being in this class using frames. It is the equivalent to the criteria using orthonormal bases. Then we construct Bessel sequences frames and Riesz bases for the class of Hilbert Schmidt operators using the tensor product of such sequences in the original...

متن کامل

Basic Definition and Properties of Bessel Multipliers

This paper introduces the concept of Bessel multipliers. These operators are defined by a fixed multiplication pattern, which is inserted between the analysis and synthesis operators. The proposed concept unifies the approach used for Gabor multipliers for arbitrary analysis/synthesis systems, which form Bessel sequences, like wavelet or irregular Gabor frames. The basic properties of this clas...

متن کامل

Controlled Continuous $G$-Frames and Their Multipliers in Hilbert Spaces

In this paper, we introduce $(mathcal{C},mathcal{C}')$-controlled continuous $g$-Bessel families and their multipliers in Hilbert spaces and investigate some of their properties. We show that under some conditions sum of two $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frames is a $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frame. Also, we investigate when a $(mathcal{C},mathca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005