Downstream Oligonucleotides Strongly Enhance the Affinity of GMP to RNA Primer-Template Complexes.

نویسندگان

  • Chun Pong Tam
  • Albert C Fahrenbach
  • Anders Björkbom
  • Noam Prywes
  • Enver Cagri Izgu
  • Jack W Szostak
چکیده

Origins of life hypotheses often invoke a transitional phase of nonenzymatic template-directed RNA replication prior to the emergence of ribozyme-catalyzed copying of genetic information. Here, using NMR and ITC, we interrogate the binding affinity of guanosine 5'-monophosphate (GMP) for primer-template complexes when either another GMP, or a helper oligonucleotide, can bind downstream. Binding of GMP to a primer-template complex cannot be significantly enhanced by the possibility of downstream monomer binding, because the affinity of the downstream monomer is weaker than that of the first monomer. Strikingly, GMP binding affinity can be enhanced by ca. 2 orders of magnitude when a helper oligonucleotide is stably bound downstream of the monomer binding site. We compare these thermodynamic parameters to those previously reported for T7 RNA polymerase-mediated replication to help address questions of binding affinity in related nonenzymatic processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncovering the Thermodynamics of Monomer Binding for RNA Replication

The nonenzymatic replication of primordial RNA is thought to have been a critical step in the origin of life. However, despite decades of effort, the poor rate and fidelity of model template copying reactions have thus far prevented an experimental demonstration of nonenzymatic RNA replication. The overall rate and fidelity of template copying depend, in part, on the affinity of free ribonucleo...

متن کامل

Unusual Base-Pairing Interactions in Monomer–Template Complexes

Many high-resolution crystal structures have contributed to our understanding of the reaction pathway for catalysis by DNA and RNA polymerases, but the structural basis of nonenzymatic template-directed RNA replication has not been studied in comparable detail. Here we present crystallographic studies of the binding of ribonucleotide monomers to RNA primer-template complexes, with the goal of i...

متن کامل

Interactions between HIV-1 Reverse Transcriptase and the Downstream Template Strand in Stable Complexes with Primer-Template

BACKGROUND Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) forms stable ternary complexes in which RT is bound tightly at fixed positions on the primer-template (P/T). We have probed downstream interactions between RT and the template strand in the complex containing the incoming dNTP (+1 dNTP*RT*P/T complex) and in the complex containing the pyrophosphate analog, foscarnet...

متن کامل

Ribozyme-catalyzed primer extension by trinucleotides: a model for the RNA-catalyzed replication of RNA.

The existence of RNA enzymes that catalyze phosphodiester transfer reactions suggests that RNA-catalyzed RNA replication might be possible. Indeed, it has been shown that the Tetrahymena and sunY self-splicing introns will catalyze the template-directed ligation of RNA oligonucleotides (Doudna et al., 1989, 1991). We have sought to develop a more general RNA replication system in which arbitrar...

متن کامل

Generation of Functional RNAs from Inactive Oligonucleotide Complexes by Non-enzymatic Primer Extension

The earliest genomic RNAs had to be short enough for efficient replication, while simultaneously serving as unfolded templates and effective ribozymes. A partial solution to this paradox may lie in the fact that many functional RNAs can self-assemble from multiple fragments. Therefore, in early evolution, genomic RNA fragments could have been significantly shorter than unimolecular functional R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 139 2  شماره 

صفحات  -

تاریخ انتشار 2017