Binding properties of the stilbene disulfonate sites on human erythrocyte AE1: kinetic, thermodynamic, and solid state deuterium NMR analyses.
نویسندگان
چکیده
A novel stilbene disulfonate, 4-trimethylammonium-4'-isothiocyanostilbene-2,2'-disulfonic acid (TIDS), has been chemically synthesized, and the interaction of this probe with human erythrocyte anion exchanger (AE1) was characterized. Covalent labeling of intact erythrocytes by [N(+)((14)CH(3))(3)]TIDS revealed that specific modification of AE1 was achieved only after removal of other ligand binding sites by external trypsinization. Following proteolysis, (1.2 +/- 0.4) x 10(6) TIDS binding sites per erythrocyte could be blocked by prior treatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a highly specific inhibitor of AE1. Inhibition of sulfate equilibrium exchange by TIDS in whole cells was described by a Hill coefficient of 1.10 +/- 0.06, which reduced to 0.51 +/- 0.01 following external trypsinization. The negative cooperativity of TIDS binding following external trypsinization suggests that trypsin-sensitive proteins modulate allosteric coupling between AE1 monomers. Thermodynamic analysis revealed that TIDS binding induces smaller conformational changes in AE1 than is observed following DIDS binding. The similar inhibitory potencies of both TIDS (IC(50) = 0.71 +/- 0.48 microM) and DIDS (IC(50) = 0.2 microM) imply that there is no correlation between the ability of stilbene disulfonates to arrest anion exchange function and the magnitude of ligand-induced conformational changes in AE1. Solid state (2)H NMR analysis of a [N(+)(CD(3))(3)]TIDS-AE1 complex in both unoriented and macroscopically oriented membranes revealed that large amplitude "wobbling" motions describe ligand dynamics. The data are consistent with a model where TIDS bound to AE1 is located exofacially in contact with the bulk aqueous phase.
منابع مشابه
Modulation of clinical expression and band 3 deficiency in hereditary spherocytosis.
We present two novel alleles of the anion-exchanger 1 (AE1) gene, allele Coimbra and allele Mondego. Allele Coimbra (V488M, GTG --> ATG) affects a conserved position in the putative second ectoplasmic loop of erythrocyte band 3. In 15 simple heterozygotes, it yielded a mild form of hereditary spherocytosis (HS) with band 3 deficiency (-20% +/- 2%) and a reduced number of 4,4'-diisothiocyano-1,2...
متن کاملThe Noncompetitive Inhibitor Ww781 Senses Changes in Erythrocyte Anion Exchanger (Ae1) Transport Site Conformation and Substrate Binding
WW781 binds reversibly to red blood cell AE1 and inhibits anion exchange by a two-step mechanism, in which an initial complex (complex 1) is rapidly formed, and then there is a slower equilibration to form a second complex (complex 2) with a lower free energy. According to the ping-pong kinetic model, AE1 can exist in forms with the anion transport site facing either inward or outward, and the ...
متن کاملA Kinetic Comparison on the Inhibition of Adenosine Deaminase by Purine Drugs
The effects of allopurinol, acyclovir and theophylline on the activity of adenosine deaminase (ADA) were studied in 50 mM sodium phosphate buffer pH 7.5 at 27°C, using a UV– Vis spectrophotometer. Adenosine deaminase is inhibited by these ligands, via different types of inhibition. Allopurinol, as a transition state analog of xanthine oxidase, and acyclovir competitively inhibit the catalytic a...
متن کاملA Kinetic Comparison on the Inhibition of Adenosine Deaminase by Purine Drugs
The effects of allopurinol, acyclovir and theophylline on the activity of adenosine deaminase (ADA) were studied in 50 mM sodium phosphate buffer pH 7.5 at 27°C, using a UV– Vis spectrophotometer. Adenosine deaminase is inhibited by these ligands, via different types of inhibition. Allopurinol, as a transition state analog of xanthine oxidase, and acyclovir competitively inhibit the catalytic a...
متن کاملMolecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin
Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 34 شماره
صفحات -
تاریخ انتشار 1999