A general strategy to inhibiting viral −1 frameshifting based on upstream attenuation duplex formation
نویسندگان
چکیده
Viral -1 programmed ribosomal frameshifting (PRF) as a potential antiviral target has attracted interest because many human viral pathogens, including human immunodeficiency virus (HIV) and coronaviruses, rely on -1 PRF for optimal propagation. Efficient eukaryotic -1 PRF requires an optimally placed stimulator structure downstream of the frameshifting site and different strategies targeting viral -1 PRF stimulators have been developed. However, accessing particular -1 PRF stimulator information represents a bottle-neck in combating the emerging epidemic viral pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV). Recently, an RNA hairpin upstream of frameshifting site was shown to act as a cis-element to attenuate -1 PRF with mechanism unknown. Here, we show that an upstream duplex formed in-trans, by annealing an antisense to its complementary mRNA sequence upstream of frameshifting site, can replace an upstream hairpin to attenuate -1 PRF efficiently. This finding indicates that the formation of a proximal upstream duplex is the main determining factor responsible for -1 PRF attenuation and provides mechanistic insight. Additionally, the antisense-mediated upstream duplex approach downregulates -1 PRF stimulated by distinct -1 PRF stimulators, including those of MERS-CoV, suggesting its general application potential as a robust means to evaluating viral -1 PRF inhibition as soon as the sequence information of an emerging human coronavirus is available.
منابع مشابه
Regulation of Programmed Ribosomal Frameshifting by Co-Translational Refolding RNA Hairpins
RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3' direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream ...
متن کاملAn atypical RNA pseudoknot stimulator and an upstream attenuation signal for −1 ribosomal frameshifting of SARS coronavirus
The -1 ribosomal frameshifting requires the existence of an in cis RNA slippery sequence and is promoted by a downstream stimulator RNA. An atypical RNA pseudoknot with an extra stem formed by complementary sequences within loop 2 of an H-type pseudoknot is characterized in the severe acute respiratory syndrome coronavirus (SARS CoV) genome. This pseudoknot can serve as an efficient stimulator ...
متن کاملAchieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins.
In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed -1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode no...
متن کاملAn analysis by metabolic labelling of the encephalomyocarditis virus ribosomal frameshifting efficiency and stimulators
Programmed -1 ribosomal frameshifting is a mechanism of gene expression whereby specific signals within messenger RNAs direct a proportion of ribosomes to shift -1 nt and continue translating in the new reading frame. Such frameshifting normally depends on an RNA structure stimulator 3'-adjacent to a 'slippery' heptanucleotide shift site sequence. Recently we identified an unusual frameshifting...
متن کاملRecognition of RNA duplexes by chemically modified triplex-forming oligonucleotides
Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and r...
متن کامل