Higher plant cortical microtubule array analyzed in vitro in the presence of the cell wall.

نویسندگان

  • Guo-Wei Tian
  • Damien Smith
  • Susanne Glück
  • Tobias I Baskin
چکیده

Plant morphogenesis depends on an array of microtubules in the cell cortex, the cortical array. Although the cortical array is known to be essential for morphogenesis, it is not known how the array becomes organized or how it functions mechanistically. Here, we report the development of an in vitro model that provides good access to the cortical array while preserving the array's organization and, importantly, its association with the cell wall. Primary roots of maize (Zea mays) are sectioned, without fixation, in a drop of buffer and then incubated as desired before eventual fixation. Sectioning removes cytoplasm except for a residuum comprising cortical microtubules, vesicles, and fragments of plasma membrane underlying the microtubules. The majority of the cortical microtubules remain in the cut-open cells for more than 1 h, fully accessible to the incubation solution. The growth zone or more mature tissue can be sectioned, providing access to cortical arrays that are oriented either transversely or obliquely to the long axis of the root. Using this assay, we report, first, that cortical microtubule stability is regulated by protein phosphorylation; second, that cortical microtubule stability is a function of orientation, with divergent microtubules within the array depolymerizing within minutes of sectioning; and third, that the polarity of microtubules in the cortical array is not uniform. These results suggest that the organization of the cortical array involves random nucleation followed by selective stabilization of microtubules formed at the appropriate orientation, and that the signal specifying alignment must treat orientations of +/- 180 degrees as equivalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns.

Plant cortical microtubule arrays determine the cell wall deposition pattern and proper cell shape and function. Although various microtubule-associated proteins regulate the cortical microtubule array, the mechanisms underlying marked rearrangement of cortical microtubules during xylem differentiation are not fully understood. Here, we show that local Rho of Plant (ROP) GTPase signaling target...

متن کامل

Presence of Antioxidant in in vitro Maturation Medium and its Effects on Glutathione Level, Spindle Area and Rate of in vitro Fertilization

Background: Effect of different doses of cysteamine on rate of in vitro maturation (IVM), in vitro fertilization (IVF) and glutathione (GSH) level was studied. Metaphase II (MII) spindle area was analyzed for quantification of shape and size of oocytes. Methods: Female mice were primed with 5 IU of pregnant mare’s stimulating gonadotrophin. Germinal vesicle (GV) oocytes were retrieved 48 hrs la...

متن کامل

Cortical microtubule rearrangements and cell wall patterning

Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-...

متن کامل

The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning

Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhi...

متن کامل

Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells

Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell motility and the cytoskeleton

دوره 57 1  شماره 

صفحات  -

تاریخ انتشار 2004