Degradation of bisphenol-a using a sonophoto Fenton-like hybrid process over a LaFeO3 perovskite catalyst and a comparison of its activity with that of a TiO2 photocatalyst
نویسنده
چکیده
Oxidation of bisphenol-A (BPA) was investigated using a sonophoto Fenton-like hybrid process under visible light irradiation in the presence of iron-containing perovskite LaFeO3 catalysts. For this purpose, firstly the perovskite catalyst (LaFeO3) was prepared by the sol-gel method and calcined at different temperatures (500, 700, and 800 ◦C). The prepared catalysts were characterized using XRD, SEM, FTIR, nitrogen adsorption, UV-vis DRS, and ICP/OES measurements. Among the prepared catalysts the catalyst that was calcined at 500 ◦C showed better catalytic activity with respect to degradation and chemical oxygen demand (COD) reduction (of 21.8% and 11.2%, respectively, after 3 h of reaction duration) than the other catalysts calcined at 700 ◦C and 800 ◦C. The catalytic activity of the LaFeO3 perovskite catalyst calcined at 500 ◦C was compared with that of a TiO2 photocatalyst containing Fe and prepared by the sol-gel method. Better photocatalytic activity in terms of degradation of BPA, total organic carbon (TOC), and COD reductions was observed with the LaFeO3 perovskite catalyst under visible light. The degradation, COD, and TOC reductions after 6 h of oxidation were 34.8%, 26.9%, and 8.8% for the LaFeO3 perovskite catalyst, and 33.1%, 19.7%, and 4.9% for the Fe/TiO2 catalyst, respectively.
منابع مشابه
Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity
Perovskite LaFeO3/montmorillonite nanocomposites (LaFeO3/MMT) have been successfully prepared via assembling LaFeO3 nanoparticles on the surface of montmorillonite with citric acid assisted sol-gel method. The results indicated that the uniform LaFeO3 nanoparticles were densely deposited onto the surface of montmorillonite, mainly ranging in diameter from 10 nm to 15 nm. The photocatalytic acti...
متن کاملMethyl orange degradation over nano-LaMnO3 as a green catalyst under the mild conditions
This study was conducted to investigate the use of cubic LaMnO3 nano-perovskite as a green catalyst for the degradation of an aqueous solution of methyl orange under different conditions. Nanoscale cubic lanthanum manganite with the particle size of ~20 nm was successfully synthesized via citrate sol-gel method. The sample was characterized using the FT-IR and UV-Vis spectroscopy, XRD, SEM, and...
متن کاملDegradation of Phthalocyanine by a Core-Shell TiO2 Photocatalyst: Effect of Iron Dopping on Band Gap
In this research, initially, the sol-gel method was employed to produce γ-alumina and TiO2 catalysts with core-shell structure. Iron (III) was used as a dopant. The newlyproduced core-shells were Fe/TiO2// Fe/ γ-Al2O3 (FTFA). Sulfonated cobalt phthalocyanine was used as a dye pollutant in Merox process. By doping Fe in TiO2 catalyst, the ef...
متن کاملEfficient Fenton like degradation of Methylene blue in aqueous solution by using Fe3O4 nanoparticles as catalyst
Fe3O4 nanoparticles were prepared hydrothermally and characterized by X-Ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM). It was found that these nanoparticles can act as an efficient catalyst in the degradation of Methylene blue dye in aqueous solution in a Fenton like system in presence of 30% perhydrol. Uv-Vis spectroscopy was used to determine the concentration of ...
متن کاملMixed ZnO-TiO2 Suspended Solution as an Efficient Photocatalyst for Decolonization of a Textile Dye from Waste Water
Introduction: Textile industries produce large volume of colored dye effluents which are toxic and removal of dyes from wastewater is a significant environmental issue. Advanced oxidation process (AOPs) is alternative method for the complete degradation many organic pollutants. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. ...
متن کامل