Improved Word Representation Learning with Sememes
نویسندگان
چکیده
Sememes are minimum semantic units of word meanings, and the meaning of each word sense is typically composed by several sememes. Since sememes are not explicit for each word, people manually annotate word sememes and form linguistic common-sense knowledge bases. In this paper, we present that, word sememe information can improve word representation learning (WRL), which maps words into a low-dimensional semantic space and serves as a fundamental step for many NLP tasks. The key idea is to utilize word sememes to capture exact meanings of a word within specific contexts accurately. More specifically, we follow the framework of Skip-gram and present three sememe-encoded models to learn representations of sememes, senses and words, where we apply the attention scheme to detect word senses in various contexts. We conduct experiments on two tasks including word similarity and word analogy, and our models significantly outperform baselines. The results indicate that WRL can benefit from sememes via the attention scheme, and also confirm our models being capable of correctly modeling sememe information.
منابع مشابه
Chinese Word Sense Disambiguation with PageRank and HowNet
Word sense disambiguation is a basic problem in natural language processing. This paper proposed an unsupervised word sense disambiguation method based PageRank and HowNet. In the method, a free text is firstly represented as a sememe graph with sememes as vertices and relatedness of sememes as weighted edges based on HowNet. Then UW-PageRank is applied on the sememe graph to score the importan...
متن کاملWord Type Effects on L2 Word Retrieval and Learning: Homonym versus Synonym Vocabulary Instruction
The purpose of this study was twofold: (a) to assess the retention of two word types (synonyms and homonyms) in the short term memory, and (b) to investigate the effect of these word types on word learning by asking learners to learn their Persian meanings. A total of 73 Iranian language learners studying English translation participated in the study. For the first purpose, 36 freshmen from an ...
متن کاملWord Sense Disambiguation through Sememe Labeling
Currently most word sense disambiguation (WSD) systems are relatively individual word sense experts. Scarcely do these systems take word sense transitions between senses of linearly consecutive words or syntactically dependent words into consideration. Word sense transitions are very important. They embody the fluency of semantic expression and avoid sparse data problem effectively. In this pap...
متن کامل基於《知網》的辭彙語義相似度計算 (Word Similarity Computing Based on How-net)
Word similarity is broadly used in many applications, such as information retrieval, information extraction, text classification, word sense disambiguation, example-based machine translation, etc. There are two different methods used to compute similarity: one is based on ontology or a semantic taxonomy; the other is based on collocations of words in a corpus. As a lexical knowledgebase with ri...
متن کاملLexical Sememe Prediction via Word Embeddings and Matrix Factorization
Sememes are defined as the minimum semantic units of human languages. People have manually annotated lexical sememes for words and form linguistic knowledge bases. However, manual construction is time-consuming and labor-intensive, with significant annotation inconsistency and noise. In this paper, we for the first time explore to automatically predict lexical sememes based on semantic meanings...
متن کامل