A General Method for Third-Order Bias and Variance Corrections on a Nonlinear Estimator
نویسندگان
چکیده
Motivated by a recent study of Bao and Ullah (2007a) on finite sample properties of MLE in the pure SAR (spatial autoregressive) model, a general method for third-order bias and variance corrections on a nonlinear estimator is proposed based on stochastic expansion and bootstrap. Working with concentrated estimating equation simplifies greatly the high-order expansions for bias and variance; a simple bootstrap procedure overcomes a major difficulty in analytically evaluating expectations of various quantities in the expansions. The method is then studied in detail using a more general SAR model, with its effectiveness in correcting bias and improving inference fully demonstrated by extensive Monte Carlo experiments. Compared with the analytical approach, the proposed approach is much simpler and has a much wider applicability. The validity of the bootstrap procedure is formally established. The proposed method is then extended to the case of more than one nonlinear estimator.
منابع مشابه
Exploring Estimator Bias-Variance Tradeoffs Using the Uniform CR Bound - Signal Processing, IEEE Transactions on
We introduce a plane, which we call the delta-sigma plane, that is indexed by the norm of the estimator bias gradient and the variance of the estimator. The norm of the bias gradient is related to the maximum variation in the estimator bias function over a neighborhood of parameter space. Using a uniform Cramer-Rao (CR) bound on estimator variance, a delta-sigma tradeoff curve is specified that...
متن کاملExploring estimator bias-variance tradeoffs using the uniform CR bound
We introduce a plane, which we call the delta-sigma plane, that is indexed by the norm of the estimator bias gradient and the variance of the estimator. The norm of the bias gradient is related to the maximum variation in the estimator bias function over a neighborhood of parameter space. Using a uniform Cramer-Rao (CR) bound on estimator variance a delta-sigma tradeo curve is speci ed which de...
متن کاملIN IEEE TRANS . ON SIGNAL PROCESSING , JULY 1996 1 Exploring Estimator Bias - Variance
We introduce a plane, which we call the delta-sigma plane, that is indexed by the norm of the estimator bias gradient and the variance of the estimator. The norm of the bias gradient is related to the maximum variation in the estimator bias function over a neighborhood of parameter space. Using a uniform Cramer-Rao (CR) bound on estimator variance a delta-sigma tradeoo curve is speciied which d...
متن کاملThe Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel
One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...
متن کاملNonlinear Panel Models with Interactive Effects∗
This paper considers estimation and inference on semiparametric nonlinear panel single index models with predetermined explanatory variables and interactive individual and time effects. These include static and dynamic probit, logit, and Poisson models. Fixed effects conditional maximum likelihood estimation is challenging because the log likelihood function is not concave in the individual and...
متن کامل