Gradients with depth in electrospun fibrous scaffolds for directed cell behavior.
نویسندگان
چکیده
A major obstacle in creating viable tissue-engineered constructs using electrospinning is the lack of complete cellularization and vascularization due to the limited porosity in these densely packed fibrous scaffolds. One potential approach to circumvent this issue is the use of various gradients of chemical and biophysical cues to drive the infiltration of cells into these structures. Toward this goal, this study focused on creating durotactic (mechanical) and haptotactic (adhesive) gradients through the thickness of electrospun hyaluronic acid (HA) scaffolds using a unique, yet simple, modification of common electrospinning protocols. Specifically, both mechanical (via cross-linking: ranging from 27-100% modified methacrylated HA, MeHA) and adhesive (via inclusion of the adhesive peptide RGD: 0-3 mM RGD) gradients were each fabricated by mixing two solutions (one ramping up, one ramping down) prior to electrospinning and fiber collection. Gradient formation was verified by fluorescence microscopy, FTIR, atomic force microscopy, and cellular morphology assessment of scaffolds at different points of collection (i.e., with scaffold thickness). To test further the functionality of gradient scaffolds, chick aortic arch explants were cultured on adhesive gradient scaffolds for 7 days, and low RGD-high RGD gradient scaffolds showed significantly greater cell infiltration compared with high RGD-low RGD gradients and uniform high RGD or uniform low RGD control scaffolds. In addition to enhanced infiltration, this approach could be used to fabricate graded tissue structures, such as those that occur at interfaces.
منابع مشابه
Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library.
The properties of electrospun fibrous scaffolds, including degradation, mechanics and cellular interactions, are important for their use in tissue engineering applications. Although some diversity has been obtained previously in fibrous scaffolds, optimization of scaffold properties relies on iterative techniques in both polymer synthesis and processing. Here, we electrospun candidates from a c...
متن کاملPreparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance
Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...
متن کاملPreparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance
Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...
متن کاملساخت داربست نانوکامپوزیتی کیتوسان/پلی وینیل الکل/نانولوله کربنی/شیشه زیست فعال برای مهندسی بافت عصب
The aim of this study was to fabricate carbon nanotube (CNT) and bioactive glass nanoparticles (BG) (at levels of 5 and 10 wt%) incorporated electrospun chitosan (CS)/polyvinyl alcohol (PVA) nanofibers for potential neural tissue engineering applications.The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2011