Induction of monocyte binding to endothelial cells by MM-LDL: role of lipoxygenase metabolites.
نویسندگان
چکیده
Treatment of human aortic endothelial cells (EC) with minimally oxidized LDL (or minimally modified LDL, MM-LDL) produces a specific pattern of endothelial cell activation distinct from that produced by LPS, tumor necrosis factor-alpha, and interleukin-1, but similar to other agents that elevate cAMP. The current studies focus on the signal transduction pathways by which MM-LDL activates EC to bind monocytes. We now demonstrate that, in addition to an elevation of cAMP, lipoxygenase products are necessary for the MM-LDL response. Treatment of EC with inhibitors of the lipoxygenase pathway, 5,8,11, 14-eicosatetraynoic acid (ETYA) or cinnamyl-3, 4-dihydroxy-alpha-cyanocinnamate (CDC), blocked monocyte binding in MM-LDL-treated EC (MM-LDL=118+/-13%; MM-LDL+ETYA=33+/-4%; MM-LDL+CDC=23+/-4% increase in monocyte binding) without reducing cAMP levels. To further investigate the role of the lipoxygenase pathway, cellular phospholipids were labeled with arachidonic acid. Treatment of cells for 4 hours with 50 to 100 microg/mL MM-LDL, but not native LDL, caused a 60% increase in arachidonate release into the medium and increased the intracellular formation of 12(S)-HETE (approximately 100% increase). There was little 15(S)-HETE present, and no increase in its levels was observed. We demonstrated that 12(S)-HETE reversed the inhibitory effect of CDC. We also observed a 70% increase in the formation of 11,12-epoxyeicosatrienoic acid (11, 12-EET) in cells treated with MM-LDL. To determine the mechanism of arachidonate release induced by MM-LDL, we examined the effects of MM-LDL on intracellular calcium levels. Treatment of EC with both native LDL and MM-LDL caused a rapid release of intracellular calcium from internal stores. However, several pieces of evidence suggest that calcium release alone does not explain the increased arachidonate release in MM-LDL-treated cells. The present studies suggest that products of 12-lipoxygenase play an important role in MM-LDL action on the induction of monocyte binding to EC.
منابع مشابه
Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate.
We have previously shown that minimally oxidized LDL (MM-LDL) activated endothelial cells to increase their interaction with monocytes but not neutrophils, inducing monocyte but not neutrophil binding and synthesis of monocyte chemotactic protein-1 and monocyte colony-stimulating factor (M-CSF). In the present studies we have examined the signaling pathways by which this monocyte-specific respo...
متن کاملPartial characterization of leukocyte binding molecules on endothelial cells induced by minimally oxidized LDL.
Treatment of rabbit aortic endothelial cells, human umbilical vein endothelial cells, and human aortic endothelial cells for 4 hours with minimally oxidized low-density lipoprotein (MM-LDL) induced the adhesion of monocytes but not neutrophils or lymphocytes to these cells. This induction was blocked by inhibitors of glycoprotein synthesis (cycloheximide and tunicamycin), and binding was abolis...
متن کاملProtective Effect of High Density Lipoprotein Associated Paraoxonase
Introduction Our group has previously demonstrated that oxidized phospholipids in mildly oxidized LDL (MM-LDL) produced by oxidation with lipoxygenase, iron, or cocultures of artery wall cells increase monocyte-endothelial interactions and this sequence of events is blocked by HDL. To obtain further insight into the mechanism by which HDL abolishes the activity of MM-LDL we investigated the eff...
متن کاملStructurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils.
We previously have demonstrated that oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), a component of minimally modified low density lipoprotein (MM-LDL), activates endothelial cells to bind monocytes. 1-Palmitoyl-2- (5-oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC) and 1- palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), which are present in OxPAPC, M...
متن کاملMinimally modified low density lipoprotein stimulates monocyte endothelial interactions.
The effect of minimally modified LDL (MM-LDL) on the ability of large vessel endothelial cells (EC) to interact with monocytes and neutrophils was examined. These LDL preparations, obtained by storage or by mild iron oxidation, were indistinguishable from native LDL to the LDL receptor and were not recognized by the scavenger receptor. Treatment of EC with as little as 0.12 micrograms/ml MM-LDL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 19 3 شماره
صفحات -
تاریخ انتشار 1999