The Caenorhabditis elegans T-Box Factor MLS-1 Requires Groucho Co-Repressor Interaction for Uterine Muscle Specification
نویسندگان
چکیده
T-box proteins are conserved transcription factors that play crucial roles in development of all metazoans; and, in humans, mutations affecting T-box genes are associated with a variety of congenital diseases and cancers. Despite the importance of this transcription factor family, very little is known regarding how T-box factors regulate gene expression. The Caenorhabditis elegans genome contains 21 T-box genes, and their characterized functions include cell fate specification in a variety of tissues. The C. elegans Tbx1 sub-family member MLS-1 functions during larval development to specify the fate of non-striated uterine muscles; and, in mls-1 mutants, uterine muscles are transformed to a vulval muscle fate. Here we demonstrate that MLS-1 function depends on binding to the Groucho-family co-repressor UNC-37. MLS-1 interacts with UNC-37 via a conserved eh1 motif, and the MLS-1 eh1 motif is necessary for MLS-1 to specify uterine muscle fate. Moreover, unc-37 loss-of-function produces uterine muscle to vulval muscle fate transformation similar to those observed in mls-1 mutants. Based on these results, we conclude that MLS-1 specifies uterine muscle fate by repressing target gene expression, and this function depends on interaction with UNC-37. Moreover, we suggest that MLS-1 shares a common mechanism for transcriptional repression with related T-box factors in other animal phyla.
منابع مشابه
A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis.
In Caenorhabditis elegans, histone acetyltransferase CBP-1 counteracts the repressive activity of the histone deacetylase HDA-1 to allow endoderm differentiation, which is specified by the E cell. In the sister MS cell, the endoderm fate is prevented by the action of an HMG box-containing protein, POP-1, through an unknown mechanism. In this study, we show that CBP-1, HDA-1 and POP-1 converge o...
متن کاملThe Nk-2 box of the Drosophila homeodomain protein, Vnd, contributes to its repression activity in a Groucho-dependent manner
The transcription factor, Vnd, is a dual regulator that specifies ventral neuroblast identity in Drosophila by both repressing and activating target genes. Vnd and its homologues have a conserved amino acid sequence, the Nk-2 box or Nk specific domain, as well a conserved DNA-binding homeodomain and an EhI-type Groucho interaction domain. However, the function of the conserved Nk-2 box has not ...
متن کاملControl of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho.
Apoptosis is essential for proper development and tissue homeostasis in metazoans. It plays a critical role in generating sexual dimorphism by eliminating structures that are not needed in a specific sex. The molecular mechanisms that regulate sexually dimorphic apoptosis are poorly understood. Here we report the identification of the ceh-30 gene as a key regulator of sex-specific apoptosis in ...
متن کاملMesodermal expression of the C. elegans HMX homolog mls-2 requires the PBC homolog CEH-20
Metazoan development proceeds primarily through the regulated expression of genes encoding transcription factors and components of cell signaling pathways. One way to decipher the complex developmental programs is to assemble the underlying gene regulatory networks by dissecting the cis-regulatory modules that direct temporal-spatial expression of developmental genes and identify corresponding ...
متن کاملA Zn-finger/FH2-domain containing protein, FOZI-1, acts redundantly with CeMyoD to specify striated body wall muscle fates in the Caenorhabditis elegans postembryonic mesoderm.
Striated muscle development in vertebrates requires the redundant functions of multiple members of the MyoD family. Invertebrates such as Drosophila and Caenorhabditis elegans contain only one MyoD homolog in each organism. Earlier observations suggest that factors outside of the MyoD family might function redundantly with MyoD in striated muscle fate specification in these organisms. However, ...
متن کامل