Average-case analysis of incremental topological ordering
نویسندگان
چکیده
Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated experimentally on random DAGs. We present the first averagecase analysis of incremental topological ordering algorithms. We prove an expected runtime of O(n polylog(n)) under insertion of the edges of a complete DAG in a random order for the algorithms of Alpern et al. (SODA, 1990), Katriel and Bodlaender (TALG, 2006), and Pearce and Kelly (JEA, 2006).
منابع مشابه
eb 2 00 8 Average - Case Analysis of Online Topological Ordering ∗
Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated experimentally on random DAGs. We present the first average-case analysis of online topological orde...
متن کاملAverage-Case Analysis of Online Topological Ordering
Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated experimentally on random DAGs. We present the first average-case analysis of online topological orde...
متن کاملThe topological ordering of covering nodes
The topological ordering algorithm sorts nodes of a directed graph such that the order of the tail of each arc is lower than the order of its head. In this paper, we introduce the notion of covering between nodes of a directed graph. Then, we apply the topological orderingalgorithm on graphs containing the covering nodes. We show that there exists a cut set withforward arcs in these...
متن کاملTHE RELATION BETWEEN TOPOLOGICAL ORDERING AND ADJACENCY MATRIX IN DIGRAPHS
In this paper the properties of node-node adjacency matrix in acyclic digraphs are considered. It is shown that topological ordering and node-node adjacency matrix are closely related. In fact, first the one to one correspondence between upper triangularity of node-node adjacency matrix and existence of directed cycles in digraphs is proved and then with this correspondence other properties of ...
متن کاملA new approach to incremental topological ordering
Let G = (V,E) be a directed acyclic graph (dag) with n = |V | and m = |E|. We say that a total ordering ≺ on vertices V is a topological ordering if for every edge (u,v) ∈ E , we have u ≺ v. In this paper, we consider the problem of maintaining a topological ordering subject to dynamic changes to the underlying graph. That is, we begin with an empty graph G =(V, / 0) consisting of n nodes. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 158 شماره
صفحات -
تاریخ انتشار 2010