Average-case analysis of incremental topological ordering

نویسندگان

  • Deepak Ajwani
  • Tobias Friedrich
چکیده

Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated experimentally on random DAGs. We present the first averagecase analysis of incremental topological ordering algorithms. We prove an expected runtime of O(n polylog(n)) under insertion of the edges of a complete DAG in a random order for the algorithms of Alpern et al. (SODA, 1990), Katriel and Bodlaender (TALG, 2006), and Pearce and Kelly (JEA, 2006).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

eb 2 00 8 Average - Case Analysis of Online Topological Ordering ∗

Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated experimentally on random DAGs. We present the first average-case analysis of online topological orde...

متن کامل

Average-Case Analysis of Online Topological Ordering

Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated experimentally on random DAGs. We present the first average-case analysis of online topological orde...

متن کامل

The topological ordering of covering nodes

The topological ordering algorithm sorts nodes of a directed graph such that the order of the tail of each arc is lower than the order of its head. In this paper, we introduce the notion of covering between nodes of a directed graph. Then, we apply the topological orderingalgorithm on graphs containing the covering nodes. We show that there exists a cut set withforward arcs in these...

متن کامل

THE RELATION BETWEEN TOPOLOGICAL ORDERING AND ADJACENCY MATRIX IN DIGRAPHS

In this paper the properties of node-node adjacency matrix in acyclic digraphs are considered. It is shown that topological ordering and node-node adjacency matrix are closely related. In fact, first the one to one correspondence between upper triangularity of node-node adjacency matrix and existence of directed cycles in digraphs is proved and then with this correspondence other properties of ...

متن کامل

A new approach to incremental topological ordering

Let G = (V,E) be a directed acyclic graph (dag) with n = |V | and m = |E|. We say that a total ordering ≺ on vertices V is a topological ordering if for every edge (u,v) ∈ E , we have u ≺ v. In this paper, we consider the problem of maintaining a topological ordering subject to dynamic changes to the underlying graph. That is, we begin with an empty graph G =(V, / 0) consisting of n nodes. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 158  شماره 

صفحات  -

تاریخ انتشار 2010