Se p 20 02 Einstein – Weyl spaces and dispersionless Kadomtsev – Petviashvili equation from Painlevé I and II .

نویسندگان

  • Maciej Dunajski
  • Paul Tod
چکیده

We present two constructions of new solutions to the dispersionless KP (dKP) equation arising from the first two Painlevé transcendents. The first construction is a hodograph transformation based on Einstein–Weyl geometry, the generalised Nahm's equation and the isomonodromy problem. The second construction, motivated by the first, is a direct characterisation of solutions to dKP which are constant on a central quadric. We show how the solutions to the dKP equations can be used to construct some three-dimensional Einstein–Weyl structures, and four–dimensional anti-self-dual null-Kähler metrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Einstein–weyl Spaces and Dispersionless Kadomtsev–petviashvili Equation from Painlevé I and Ii

We present two constructions of new solutions to the dispersionless KP (dKP) equation arising from the first two Painlevé transcendents. The first construction is a hodograph transformation based on Einstein–Weyl geometry, the generalised Nahm's equation and the isomonodromy problem. The second construction, motivated by the first, is a direct characterisation of solutions to dKP which are cons...

متن کامل

Interpolating Dispersionless Integrable System

We introduce a dispersionless integrable system which interpolates between the dispersionless Kadomtsev–Petviashvili equation and the hyper–CR equation. The interpolating system arises as a symmetry reduction of the anti–self–dual Einstein equations in (2, 2) signature by a conformal Killing vector whose self–dual derivative is null. It also arises as a special case of the Manakov–Santini integ...

متن کامل

Interpolating Integrable System

We introduce a dispersionless integrable system which interpolates between the dispersionless Kadomtsev–Petviashvili equation and the hyper–CR equation. The interpolating system arises as a symmetry reduction of the anti–self–dual Einstein equations in (2, 2) signature by a conformal Killing vector whose self–dual derivative is null. It also arises as a special case of the Manakov–Santini integ...

متن کامل

Einstein–Weyl geometry, the dKP equation and twistor theory

It is shown that Einstein–Weyl (EW) equations in 2+1 dimensions contain the dispersionless Kadomtsev–Petviashvili (dKP) equation as a special case: If an EW structure admits a constant weighted vector then it is locally given by h = dy2−4dxdt−4udt2, ν = −4uxdt, where u = u(x, y, t) satisfies the dKP equation (ut − uux)x = uyy. Linearised solutions to the dKP equation are shown to give rise to f...

متن کامل

Einstein–Maxwell–Dilaton metrics from three–dimensional Einstein–Weyl structures

A class of time dependent solutions to (3 + 1) Einstein–Maxwell-dilaton theory with attractive electric force is found from Einstein–Weyl structures in (2+1) dimensions corresponding to dispersionless Kadomtsev–Petviashvili and SU(∞) Toda equations. These solutions are obtained from time–like Kaluza–Klein reductions of (3 + 2) solitons. ∗email [email protected]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002