1 5 Se p 19 99 How to calculate A - Hilb C 3 Alastair Craw

نویسندگان

  • Alastair Craw
  • Miles Reid
چکیده

Nakamura [N] introduced the G-Hilbert scheme for a finite subgroup G ⊂ SL(3, C), and conjectured that it is a crepant resolution of the quotient C3/G. He proved this for a diagonal Abelian group A by introducing an explicit algorithm that calculates A-HilbC3. This note calculates A-HilbC3 much more simply, in terms of fun with continued fractions plus regular tesselations by equilateral triangles. 1 Statement of the result 1.1 The junior simplex and three Newton polygons Let A ⊂ SL(3,C) be a diagonal subgroup acting on C. Write L ⊃ Z for the overlattice generated by all the elements of A written in the form 1 r (a1, a2, a3). The junior simplex ∆ (compare [IR], [R]) has 3 vertexes e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Write R∆ for the affine plane spanned by ∆, and Z 2 ∆ = L ∩ R 2 ∆ for the corresponding affine lattice. Taking each ei in turn as origin, construct the Newton polygons obtained as the convex hull of the lattice points in ∆ (see Figure 1.a): fi,0, fi,1, fi,2, . . . , fi,ki+1, (1.1) where fi,0 is the primitive vector along the side [ei, ei−1], and fi,ki+1 that along [ei, ei+1]. (The indices i, i ± 1 are cyclic. Also, since ei is the origin, the notation fi,j does double duty for a point of ∆ and the corresponding

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 3 Se p 20 01 How to calculate A - Hilb C 3 Alastair Craw

Nakamura [N] introduced the G-Hilbert scheme G-Hilb C3 for a finite subgroup G ⊂ SL(3, C), and conjectured that it is a crepant resolution of the quotient C3/G. He proved this for a diagonal Abelian group A by introducing an explicit algorithm that calculates A-HilbC3. This note calculates A-Hilb C3 much more simply, in terms of fun with continued fractions plus regular tesselations by equilate...

متن کامل

0 An explicit construction of the McKay correspondence for A - Hilb C 3

For a finite Abelian subgroup A ⊂ SL(3,C), Ito and Nakajima [IN00] established an isomorphism between the K-theory of Nakamura’s A-Hilbert scheme A-Hilb C3 and the representation ring of A. This leads to a basis of the rational cohomology of A-Hilb C3 in one-to-one correspondence with the irreducible representations of A. In this paper we construct an explicit basis of the integral cohomology o...

متن کامل

An explicit construction of the McKay correspondence for A-Hilb C

For a finite Abelian subgroup A ⊂ SL(3,C), let Y = A -Hilb(C3) denote the scheme parametrising A-clusters in C3. Ito and Nakajima proved that the tautological line bundles (indexed by the irreducible representations of A) form a basis of the K-theory of Y . We establish the relations between these bundles in the Picard group of Y and hence, following a recipe introduced by Reid, construct an ex...

متن کامل

The Coherent Component of the Moduli of Mckay Quiver Representations for Abelian Groups

For a finite abelian group G ⊂ GL(n, k), we describe the coherent component Yθ of the moduli space Mθ of McKay quiver representations. This is a not-necessarily-normal toric variety that admits a projective birational morphism Yθ → A/G obtained by variation of GIT quotient. We present a simple calculation to determine the quiver representation corresponding to any point of Yθ, and describe the ...

متن کامل

Moduli of Mckay Quiver Representations I: the Coherent Component

For a finite abelian group G ⊂ GL(n, k), we describe the coherent component Yθ of the moduli space Mθ of θ-stable McKay quiver representations. This is a not-necessarily-normal toric variety that admits a projective birational morphism Yθ → Ak /G obtained by variation of GIT quotient. As a special case, this gives a new construction of Nakamura’s G-Hilbert scheme Hilb that avoids the (typically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999