Transmission and decorrelation methods for detecting rare variants using sequencing data from related individuals
نویسندگان
چکیده
BACKGROUND Advances in whole genome sequencing have enabled the investigation of rare variants, which could explain some of the missing heritability that genome-wide association studies are unable to detect. Most methods to detect associations with rare variants are developed for unrelated individuals; however, several methods exist that utilize family studies and could have better power to detect such associations. METHODS Using whole genome sequencing data and simulated phenotypes provided by the organizers of the Genetic Analysis Workshop 19 (GAW19), we compared family-based methods that test for associations between rare and common variants with a quantitative trait. This was done using 2 fairly novel methods: family-based association test for rare variants (FBAT-RV), which is a transmission-based method that utilizes the transmission of genetic information from parent to offspring; and Minimum p value Optimized Nuisance parameter Score Test Extended to Relatives (MONSTER), which is a decorrelation method that instead attempts to adjust for relatedness using a regression-based method. We also considered family-based association test linear combination (FBAT-LC) and FBAT-Min P, which are slightly older methods that do not allow for the weighting of rare or common variants, but contrast some of the limitations of FBAT-RV. RESULTS MONSTER had much higher overall power than FBAT-RV and FBAT-Min P. Interestingly, FBAT-LC had similar overall power as MONSTER. MONSTER had the highest power for a gene accounting for a larger percent of the phenotypic variance, whereas MONSTER and FBAT-LC both had the highest power for a gene accounting for moderate variance. FBAT-LC had the highest power for a gene accounting for the least variance. CONCLUSIONS Based on the simulated data from GAW19, MONSTER and FBAT-LC were the most powerful of the methods assessed. However, there are limitations to each of these methods that should be carefully considered when conducting an analysis of rare variants in related individuals. This emphasizes the need for methods that can incorporate the advantages of each of these methods into 1 family-based association test for rare variants.
منابع مشابه
Rare variant association testing under low-coverage sequencing.
Deep sequencing technologies enable the study of the effects of rare variants in disease risk. While methods have been developed to increase statistical power for detection of such effects, detecting subtle associations requires studies with hundreds or thousands of individuals, which is prohibitively costly. Recently, low-coverage sequencing has been shown to effectively reduce the cost of gen...
متن کاملMethods for detecting associations with rare variants for common diseases: application to analysis of sequence data.
Although whole-genome association studies using tagSNPs are a powerful approach for detecting common variants, they are underpowered for detecting associations with rare variants. Recent studies have demonstrated that common diseases can be due to functional variants with a wide spectrum of allele frequencies, ranging from rare to common. An effective way to identify rare variants is through di...
متن کاملHapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data
Identity by descent (IBD) can be reliably detected for long shared DNA segments, which are found in related individuals. However, many studies contain cohorts of unrelated individuals that share only short IBD segments. New sequencing technologies facilitate identification of short IBD segments through rare variants, which convey more information on IBD than common variants. Current IBD detecti...
متن کاملDetecting rare variants for quantitative traits using nuclear families.
With the advent of sequencing technology opening up a new era of personal genome sequencing, huge amounts of rare variant data have suddenly become available to researchers seeking genetic variants related to human complex disorders. There is an urgent need for the development of novel statistical methods to analyze rare variants in a statistically powerful manner. While a number of statistical...
متن کاملGenetic and population analysis A haplotype-based framework for group-wise transmission/disequilibrium tests for rare variant association analysis
Motivation: A major focus of current sequencing studies for human genetics is to identify rare variants associated with complex diseases. Aside from reduced power of detecting associated rare variants, controlling for population stratification is particularly challenging for rare variants. Transmission/disequilibrium tests (TDT) based on family designs are robust to population stratification an...
متن کامل