Thermal transport across carbon nanotube-graphene covalent and van der Waals junctions

نویسندگان

  • Jingjing Shi
  • Yalin Dong
  • Timothy Fisher
  • Xiulin Ruan
چکیده

Carbon nanotubes and graphene are promising materials for thermal management applications due to their high thermal conductivities. However, their thermal properties are anisotropic, and the radial or cross-plane direction thermal conductivity is low. A 3D Carbon nanotube (CNT)-graphene structure has previously been proposed to address this limitation, and direct molecular dynamics simulations have been used to predict the associated thermal conductivity. In this work, by recognizing that thermal resistance primarily comes from CNT-graphene junctions, a simple network model of thermal transport in pillared graphene structure is developed. Using non-equilibrium molecular dynamics, the resistance across an individual CNT-graphene junction with sp covalent bonds is found to be around 6 10 11 mK/W, which is significantly lower than typical values reported for planar interfaces between dissimilar materials. In contrast, the resistance across a van der Waals junction is about 4 10 8 mK/W. Interestingly, when the CNT pillar length is small, the interfacial resistance of the sp covalent junction is found to decrease as the CNT pillar length decreases, suggesting the presence of coherence effects. To explain this intriguing trend, the junction thermal resistance is decomposed into interfacial region and boundary components, and it is found that while the boundary resistance has little dependence on the pillar length, the interfacial region resistance decreases as the pillar length decreases. This is explained by calculating the local phonon density of states (LDOS) of different regions near the boundary. The LDOS overlap between the interfacial region and the center region of CNT increases as the pillar length decreases, leading to the decrease of interfacial region resistance. The junction resistance Rj is eventually used in the network model to estimate the effective thermal conductivity, and the results agree well with direct MD simulation data, demonstrating the effectiveness of our model. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927273]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Vibration Analysis of Embedded Multiwalled Carbon Nanotubes in Thermal Environment

In this article, based on the Euler-Bernoulli beam theory, the large-amplitude vibration of multiwalled carbon nanotubes embedded in an elastic medium is investigated. The method of incremental harmonic balance is implemented to solve the set of governing nonlinear equations coupled via the van der Waals (vdW) interlayer force. The influences of number of tube walls, the elastic medium, nanotub...

متن کامل

Thermal Resistance across Interfaces Comprising Dimensionally Mismatched Carbon Nanotube-Graphene Junctions in 3D Carbon Nanomaterials

In the present study, reverse nonequilibrium molecular dynamics is employed to study thermal resistance across interfaces comprising dimensionally mismatched junctions of single layer graphene floors with (6,6) single-walled carbon nanotube (SWCNT) pillars in 3D carbon nanomaterials. Results obtained from unit cell analysis indicate the presence of notable interfacial thermal resistance in the ...

متن کامل

Thermal and electrical transport in ultralow density single-walled carbon nanotube networks.

The thermal, electrical, and thermoelectric properties of aerogels of single-walled carbon nanotubes are characterized. Their ultralow density enables the transport properties of the junctions to be distinguished from those of the nanotubes themselves. Junction thermal and electrical conductances are found to be orders of magnitude larger than those found in typical dense SWCNT networks. In par...

متن کامل

A Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment

In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...

متن کامل

Transverse vibration and instability of fluid conveying triple-walled carbon nanotubes based on strain-inertia gradient theory

In this paper, the transverse vibration of a triple-walled carbon nanotube (TWCNT) conveying fluid flow is studied based on the strain/inertia gradient theory with van der Waals interaction taken into consideration. The nanotube is modelled using Euler-Bernoulli beam model and the Galerkin’s method is employed to obtain the CNT complex valued Eigen-frequencies. The effects of the fluid flow tho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015