A Centrosome-autonomous Signal That Involves Centriole Disengagement Permits Centrosome Duplication in G2 Phase after DNA Damage
نویسندگان
چکیده
DNA damage can induce centrosome overduplication in a manner that requires G2-to-M checkpoint function, suggesting that genotoxic stress can decouple the centrosome and chromosome cycles. How this happens is unclear. Using live-cell imaging of cells that express fluorescently tagged NEDD1/GCP-WD and proliferating cell nuclear antigen, we found that ionizing radiation (IR)-induced centrosome amplification can occur outside S phase. Analysis of synchronized populations showed that significantly more centrosome amplification occurred after irradiation of G2-enriched populations compared with G1-enriched or asynchronous cells, consistent with G2 phase centrosome amplification. Irradiated and control populations of G2 cells were then fused to test whether centrosome overduplication is allowed through a diffusible stimulatory signal, or the loss of a duplication-inhibiting signal. Irradiated G2/irradiated G2 cell fusions showed significantly higher centrosome amplification levels than irradiated G2/unirradiated G2 fusions. Chicken-human cell fusions demonstrated that centrosome amplification was limited to the irradiated partner. Our finding that only the irradiated centrosome can duplicate supports a model where a centrosome-autonomous inhibitory signal is lost upon irradiation of G2 cells. We observed centriole disengagement after irradiation. Although overexpression of dominant-negative securin did not affect IR-induced centrosome amplification, Plk1 inhibition reduced radiation-induced amplification. Together, our data support centriole disengagement as a licensing signal for DNA damage-induced centrosome amplification.
منابع مشابه
Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells.
It has been proposed that separase-dependent centriole disengagement at anaphase licenses centrosomes for duplication in the next cell cycle. Here we test whether such a mechanism exists in intact human cells. Loss of separase blocked centriole disengagement during mitotic exit and delayed assembly of new centrioles during the following S phase; however, most engagements were eventually dissolv...
متن کاملRegulation of the centrosome cycle
The centrosome, consisting of mother and daughter centrioles surrounded by the pericentriolar matrix (PCM), functions primarily as a microtubule organizing center (MTOC) in most animal cells. In dividing cells the centrosome duplicates once per cell cycle and its number and structure are highly regulated during each cell cycle to organize an effective bipolar spindle in the mitotic phase. Defec...
متن کاملOscillation of APC/C activity during cell cycle arrest promotes centrosome amplification.
Centrosome duplication is licensed by the disengagement, or 'uncoupling', of centrioles during late mitosis. However, arrest of cells in G2 can trigger premature centriole disengagement. Here, we show that premature disengagement results from untimely activation of the anaphase-promoting complex (APC/C), leading to securin degradation and release of active separase. Although APC/C activation du...
متن کاملA Tale of Two Projects: Basis for Centrosome Amplification after DNA Damage and Practical Assessment of Photodamage in Live-Cell Imaging: A Dissertation
This thesis comprises two separate studies that focus on the consequences of cellular damage. The first investigates the effects of DNA damage on centriole behavior and the second characterizes phototoxicity during live-cell imaging. Cancer treatments such as ionizing radiation and/or chemotherapeutic DNA damaging agents are intended to kill tumor cells, but they also damage normal proliferatin...
متن کاملThe linking of plate tectonics and evolutionary divergence
Whereas cohesin cleavage alone did not produce any detectable effects on engaged centrioles, Cdk inhibition, in contrast, was sufficient to induce centriole disengagement even in the absence of proper chromosome disjunction. Upon p27 injection, centriole disengagement was observed with a similar kinetics to the disengagement observed in the TEV+p27 experiments (Figure 1). Our previous experimen...
متن کامل