Evolutionary programming made faster
نویسندگان
چکیده
Evolutionary programming (EP) has been applied with success to many numerical and combinatorial optimization problems in recent years. EP has rather slow convergence rates, however, on some function optimization problems. In this paper, a “fast EP” (FEP) is proposed which uses a Cauchy instead of Gaussian mutation as the primary search operator. The relationship between FEP and classical EP (CEP) is similar to that between fast simulated annealing and the classical version. Both analytical and empirical studies have been carried out to evaluate the performance of FEP and CEP for different function optimization problems. This paper shows that FEP is very good at search in a large neighborhood while CEP is better at search in a small local neighborhood. For a suite of 23 benchmark problems, FEP performs much better than CEP for multimodal functions with many local minima while being comparable to CEP in performance for unimodal and multimodal functions with only a few local minima. This paper also shows the relationship between the search step size and the probability of finding a global optimum and thus explains why FEP performs better than CEP on some functions but not on others. In addition, the importance of the neighborhood size and its relationship to the probability of finding a near-optimum is investigated. Based on these analyses, an improved FEP (IFEP) is proposed and tested empirically. This technique mixes different search operators (mutations). The experimental results show that IFEP performs better than or as well as the better of FEP and CEP for most benchmark problems tested.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملShuffled Frog-Leaping Programming for Solving Regression Problems
There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffl...
متن کاملA Differential Evolution Approach for Global Optimization of Minlp Problems
The global optimization of mixed integer non-linear programming (MINLP) problems is an active research area in many engineering fields. In this work, Differential Evolution (DE), a hybrid Evolutionary Computation method, is used for the optimization of nonconvex MINLP problems and a comparison is made among the algorithms based on hybrid of Simplex & Simulated Annealing (MSIMPSA), Genetic Algor...
متن کاملAn Evolutionary Programming Algorithm for Automatic Engineering Design
This paper describes a new Evolutionary Programming algorithm based on Self-Organised Criticality. When tested on a range of problems drawn from real-world applications in science and engineering, it performed better than a variety of gradient descent, direct search and genetic algorithms. It proved capable of delivering high quality results faster, and is simple, robust and highly parallel.
متن کاملA Fast and Self-Repairing Genetic Programming Designer for Logic Circuits
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Evolutionary Computation
دوره 3 شماره
صفحات -
تاریخ انتشار 1999